A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-efficiency water purification for methyl orange and lead(II) by eco-friendly magnetic sulfur-doped graphene-like carbon-supported layered double oxide. | LitMetric

High-efficiency water purification for methyl orange and lead(II) by eco-friendly magnetic sulfur-doped graphene-like carbon-supported layered double oxide.

J Hazard Mater

School of Life Sciences, Shanghai University, Shanghai 200444, PR China; State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, PR China. Electronic address:

Published: October 2021

Traditional disposal techniques for the spent layered adsorbents after capturing organics suffer from intractable obstacles, such as resource waste and secondary pollution. To address this diploma, we here developed the "resource-utilization" strategy, i.e., converting the organic layered double hydroxide (as representative) to magnetic sulfur (S)-doped graphene-like carbon-supported layered double oxide (MG/S-LDO) to be reutilized in water purification. The as-prepared MG/S-LDO exhibited outstanding remediation ability toward methyl orange (MO) and lead(II), with the adsorption capacity of 1456 and 656 mg g, respectively. Specifically, the residue concentration of Pb was reduced to 0.15 mg L within 1 h, which met the discharge limit of the secondary industrial wastewater. MG/S-LDO could also maintain the preeminent adsorption capability under various interferences (such as wide pH and co-existing ions), even in the authentic water matrices. The removal mechanisms were systematically investigated to unveil that MO removal was dominated by metal-complexation, "memory effect", and π-π electron donor-acceptor (EDA). While for Pb removal, besides the released OH from LDO as precipitate agent, the vacancy defect resulting from the S doping played a crucial role in electron interaction between Pb and S-doped graphene. Additionally, the MG/S-LDO was further confirmed as an eco-friendly adsorbent with excellent reusability via the acute toxicity tests using green algae and multiple cycle experiments. This work provides a novel resource-utilization strategy for organic layered wastes to construct the functional eco-friendly materials in wastewater purification realm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126406DOI Listing

Publication Analysis

Top Keywords

layered double
12
water purification
8
methyl orange
8
orange leadii
8
graphene-like carbon-supported
8
carbon-supported layered
8
double oxide
8
organic layered
8
layered
5
high-efficiency water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!