Present work investigated the effects of processing (homogenization, sterilization) and cold storage on physicochemical properties, in vitro digestion and Caco-2 cellular uptake of bovine milk. Extreme heat sterilization and low temperature storage have significant impact on particle size and phospholipidome of bovine milk. In addition, cold storage of bovine milks led to formation of β' polymorphs crystals and endothermic peak with T higher than body temperature. Processing and cold storage also increased the initial digestibility but reduced the overall digestibility of bovine milk. This might be related to the decreased particle size of the milk fat globules, changed in the phospholipidome of the MFGM and formation of β' polymorphs crystals in frozen milk. It is interesting to note that PE has relatively faster digestion meanwhile SM has relatively slower digestion. HTST milk which demonstrated lesser changed in terms of phospholipidome demonstrated highest cellular uptakes of most fatty acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.130426 | DOI Listing |
Food Res Int
January 2025
Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
In this work, the lipidomic analysis on polar components of almond, coconut, and soy beverages was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A comparison with bovine milk was also performed. A total of 30 subclasses of polar lipids, belonging mainly to glycerophospholipids and sphingolipids, and a total of 572 molecular species were identified.
View Article and Find Full Text PDFFood Res Int
January 2025
VTT Technical Research Centre of Finland, Tekniikantie 21, 02044 VTT Espoo, Finland. Electronic address:
Oleaginous yeasts offer a promising sustainable alternative for producing edible lipids, potentially replacing animal and unsustainable plant fats and oils. In this study, we screened 11 oleaginous yeast species for their lipid profiles and identified Apiotrichum brassicae as the most promising candidate due to its versatility across different growth media. A.
View Article and Find Full Text PDFFood Res Int
January 2025
Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Establishing a high-throughput detection technology for amino acid (AA) content in milk using mid-infrared (MIR) spectroscopy has profound implications for enhancing nutritional value of milk, identifying superior milk sources, producing specialty dairy products, and expanding Dairy Herd Improvement (DHI) metrics. The aim of this study was to evaluate the effectiveness of MIR spectroscopy in predicting the content of 15 individual total AA (TAAs) and 16 free AA (FAAs) in bovine milk as well as to investigate the major factors affecting the phenotypic variability of AA content. From March 2023 to March 2024, 513 milk samples were collected from 10 Holstein dairy farms in China and analyzed using Bentley spectrometers for MIR measurements.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada; Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada. Electronic address:
Mastitis is the most common disease affecting dairy cattle and is associated with substantial milk loss. Somatic cell count (SCC) has been widely used as an indicator of udder inflammation (e.g.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Accurate identification of cows' likelihood of conception during the period from recent calving to the first artificial insemination (AI) will provide assistance in managing the fertility of dairy cows and contribute to the economic prosperity and sustainability of the farm. The purpose of this study was to use FTIR spectroscopy collected from recent calving to the first artificial insemination (AI) to predict the cow's likelihood of conception to first AI, first or second AI. This study specifically focused on the role of FTIR spectral and farm data collected at different time windows in improving the accuracy of model for predicting the cow's likelihood of conception to first AI, first or second AI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!