Ganoderma comprises a common bracket fungal genus that causes basal stem rot in deciduous and coniferous trees and palms, thus having a large economic impact on forestry production. We estimated pathogen abundance using long-term, daily spore concentration data collected in five biogeographic regions in Europe and SW Asia. We hypothesized that pathogen abundance in the air depends on the density of potential hosts (trees) in the surrounding area, and that its spores originate locally. We tested this hypothesis by (1) calculating tree cover density, (2) assessing the impact of local meteorological variables on spore concentration, (3) computing back trajectories, (4) developing random forest models predicting daily spore concentration. The area covered by trees was calculated based on Tree Density Datasets within a 30 km radius from sampling sites. Variations in daily and seasonal spore concentrations were cross-examined between sites using a selection of statistical tools including HYSPLIT and random forest models. Our results showed that spore concentrations were higher in Northern and Central Europe than in South Europe and SW Asia. High and unusually high spore concentrations (> 90th and > 98th percentile, respectively) were partially associated with long distance transported spores: at least 33% of Ganoderma spores recorded in Madeira during days with high concentrations originated from the Iberian Peninsula located >900 km away. Random forest models developed on local meteorological data performed better in sites where the contribution of long distance transported spores was lower. We found that high concentrations were recorded in sites with low host density (Leicester, Worcester), and low concentrations in Kastamonu with high host density. This suggests that south European and SW Asian forests may be less severely affected by Ganoderma. This study highlights the effectiveness of monitoring airborne Ganoderma spore concentrations as a tool for assessing local Ganoderma pathogen infection levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.148509 | DOI Listing |
J Fungi (Basel)
December 2024
College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
To determine the compatibility of two new biocontrol fungi with common chemical pesticides, this study examined the effects of three insecticides, namely, avermectin, imidacloprid, and acetamiprid, and three fungicides, namely, chlorogenonil, boscalid, and kasugamycin, on the mycelial growth and spore germination of strains IF-1106 and IJ-tg19. The insecticidal effects of mixed insecticides or fungicides with good compatibility with IJ-tg19 against were tested. The results showed that the six chemical pesticides exerted different degrees of inhibition on the mycelial growth of both strains, with an obvious dose-dependent effect.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China.
This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against , the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of , with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15.
View Article and Find Full Text PDFLett Appl Microbiol
December 2024
Cantel Medical Italy, a STERIS Company, Via Laurentina, 169, 00071 Pomezia, Italy.
This work aimed to improve some steps of the existing guidelines of the European Standards to obtain an Aspergillus brasiliensis ATCC 16404 spore suspension with >75% spiny spores without mycelia and a concentration of at least 1.5×108 CFU ml-1. Several manufacturers' combinations "strain/medium" were assessed in terms of yield of spiny spores.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CCT- La Plata CONICET, CIC-PBA, Facultad de Ciencias Exactas, UNLP), Argentina; Cátedra de Microbiología. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP), Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina. Electronic address:
Clostridioides difficile is a spore-forming pathogen capable of causing severe disease in humans. Critical stages in the biological cycle of this microorganism include sporogenesis/germination and toxin production by vegetative cells. Antagonizing these pivotal events could aid in prevention and treatment to manage this pathogen.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!