Background: Blau syndrome (BS) is an autoinflammatory disease associated with mutations in nucleotide-binding oligomerization domain 2. Although treatments with anti-TNF agents have been reported to be effective, the underlying molecular mechanisms remain unclear.
Objective: We aimed to elucidate the mechanisms of autoinflammation in patients with BS and to clarify how anti-TNF treatment controls the disease phenotype at the cellular level in clinical samples.
Methods: Macrophages were differentiated from monocytes of 7 BS patients, and global transcriptional profiles of 5 patients were analyzed with or without IFN-γ stimulation. Macrophages were also generated from BS-specific induced pluripotent stem cells (iPSCs), and their transcriptome was examined for comparison.
Results: Aberrant inflammatory responses were observed upon IFN-γ stimulation in macrophages from untreated BS patients, but not in those from patients treated with anti-TNF. iPSC-derived macrophages carrying a disease-associated mutation also showed IFN-γ-dependent accelerated inflammatory responses. Comparisons of peripheral blood- and iPSC-derived macrophages revealed the upregulation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) targets in unstimulated macrophages as a common feature.
Conclusions: IFN-γ stimulation is one of the key signals driving aberrant inflammatory responses in BS-associated macrophages. However, long-term treatment with anti-TNF agents ameliorates such abnormalities even in the presence of IFN-γ stimulation. Our data thus suggest that preexposure to TNF or functionally similar cytokines inducing NF-κB-driven proinflammatory signaling during macrophage development is a prerequisite for accelerated inflammatory responses upon IFN-γ stimulation in BS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2021.05.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!