Human amniotic mesenchymal stem cells-conditioned medium protects mice from high-fat diet-induced obesity.

Stem Cell Res Ther

The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China.

Published: June 2021

Background: Obesity is a metabolic disorder syndrome characterized by excessive fat accumulation that is related to many diseases. Human amniotic mesenchymal stem cells (hAMSCs) have a great potential for cell-based therapy due to their characteristics such as pluripotency, low immunogenicity, no tumorigenicity, potent paracrine effects, and no ethical concern. Recently, we observed that both hAMSCs and their conditioned medium (hAMSCs-CM) efficiently repaired skin injury, inhibited hepatocellular carcinoma, and alleviated high-fat diet (HFD)-induced diabetes. However, the effects and the underlying mechanisms of hAMSCs-CM on high-fat diet (HFD)-induced obesity were not explored.

Methods: The characteristics of hAMSCs were confirmed by flow cytometry, RT-PCR, and immunofluorescence. Obese mice were induced by administrating HFD for 15 weeks and simultaneously, the mice were intraperitoneally injected with hAMSCs-CM weekly to evaluate the effects of hAMSCs-CM on HFD-induced obesity. GTT and ITT assays were used to assess the effects of hAMSCs-CM on HFD-induced glucose tolerance and insulin resistance. The lipid accumulation and adipocytes hypertrophy in mouse adipose tissues were determined by histological staining, in which the alterations of blood lipid, liver, and kidney function were also examined. The role of hAMSCs-CM in energy homeostasis was monitored by examining the oxygen consumption (VO), carbon dioxide production (VCO), and food and water intake in mice. Furthermore, the expressions of the genes related to glucose metabolism, fatty acid β oxidation, thermogenesis, adipogenesis, and inflammation were determined by western blot analysis, RT-PCR, and immunofluorescence staining. The roles of hAMSCs-CM in adipogenesis and M1/M2 macrophage polarization were investigated with 3T3-L1 preadipocytes or RAW264.7 cells in vitro.

Results: hAMSCs-CM significantly restrained HFD-induced obesity in mice by inhibiting adipogenesis and lipogenesis, promoting energy expenditure, and reducing inflammation. The underlying mechanisms of the anti-obesity of hAMSCs-CM might be involved in inhibiting PPARγ and C/EBPα-mediated lipid synthesis and adipogenesis, promoting GLUT4-mediated glucose metabolism, elevating UCP1/PPARα/PGC1α-regulated energy expenditure, and enhancing STAT3-ARG1-mediated M2-type macrophage polarization.

Conclusion: Our studies demonstrated that hAMSCs significantly alleviated HFD-induced obesity through their paracrine effects. Obviously, our results open up an attractive therapeutic modality for the prevention and treatment of obesity and other metabolic disorders clinically. The cytokines, exosomes, or micro-vesicles secreted from hAMSCs significantly inhibited HFD-induced obesity in mice by inhibiting lipid production and adipogenesis, promoting energy consumption, and reducing inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235646PMC
http://dx.doi.org/10.1186/s13287-021-02437-zDOI Listing

Publication Analysis

Top Keywords

hfd-induced obesity
20
hamscs-cm
9
human amniotic
8
amniotic mesenchymal
8
mesenchymal stem
8
obesity
8
obesity metabolic
8
paracrine effects
8
high-fat diet
8
diet hfd-induced
8

Similar Publications

High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry ( L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction.

View Article and Find Full Text PDF

Background/objectives: Obesity is a key factor in metabolic syndrome (MetS) development. Consumption of a high-fat diet (HFD) accelerates the onset of obesity and associated metabolic complications. (PB) has been traditionally utilized in Korean medicine for its antioxidant, anti-diabetic, anticancer, and hepatoprotective effects.

View Article and Find Full Text PDF

L. (purslane) extract ameliorates intestinal inflammation in diet-induced obese mice by inhibiting the TLR4/NF-κB signaling pathway.

Front Pharmacol

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.

Background: L. (purslane) is a dietary plant and a botanical drug with antioxidant, antidiabetic, and anti-inflammatory activities. However, the effects of purslane against intestinal-inflammation-associated obesity are yet to be studied.

View Article and Find Full Text PDF

A high-fat diet could lead to obesity, increasing colorectal cancer risk due to dyslipidemia and chronic inflammation, while Piper betle (PB) exhibits anti-tumor, anti-inflammation, and anti-oxidant benefits. This study aimed to determine whether PB possesses chemopreventive effects on high-fat diet (HFD)-induced and azoxymethane (AOM)-induced colon cancer. Male Sprague-Dawley rats receiving either a normal diet or HFD were divided into control, PB, AOM, and AOM+PB subgroups which were then sacrificed after 24 weeks.

View Article and Find Full Text PDF

High-fat diet and neuroinflammation: the role of mitochondria.

Pharmacol Res

January 2025

Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P R China. Electronic address:

In recent years, increasing evidence has supported that high-fat diet (HFD) can induce the chronic, low-grade neuroinflammation in the brain, which is closely associated with the impairment of cognitive function. As the key organelles responsible for energy metabolism in the cell, mitochondria are believed to involved in the pathogenesis of a variety of neurological disorders. This review summarizes the current progress in the field of the relationship between HFD exposure and neurodegenerative diseases, and outline the major routines of HFD induced neuroinflammation and its pathological significance in the pathogenesis of neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!