Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Aedes albopictus is a very invasive mosquito, which has recently colonized tropical and temperate regions worldwide. Of concern is its role in the spread of emerging or re-emerging mosquito-borne diseases. Ae. albopictus from south-western Europe and Brazil were studied to infer genetic and phenetic diversity at intra-individual, intra-population and inter-population levels, and to analyse its spread.
Methods: Genotyping was made by rDNA 5.8S-ITS-2 and mtDNA cox1 sequencing to assess haplotype and nucleotide diversity, genetic distances and phylogenetic networks. Male and female phenotyping included combined landmark-and outlined-based geometric morphometrics of wing size and shape.
Results: Specimens from seven populations from Spain, France and Brazil provided 12 cox1 and 162 5.8S-ITS-2 haplotypes, with great genetic variability difference between both markers (0.9% vs 31.2%). Five cox1 haplotypes were shared with other countries, mainly Italy, USA and China, but none was shared between Europe and Brazil. The 5.8S-ITS-2 showed 2-7 intra-individual (mean 4.7) and 16-34 intra-/inter-population haplotypes (24.7), including haplotypes shared between Spain, France and Brazil. A 4.3% of ITS-2 haplotypes were shared, mainly with Italy, USA and Thailand, evidencing worldwide spread and introductions from areas where recent outbreaks of Ae. albopictus-transmitted pathogens occurred. Wing size showed sex differences. Wing shape distinguished between Brazilian and European specimens. Both genetic and morphometric markers showed differences between insular Spain and continental Spain, France and Brazil.
Conclusions: ITS-2 proves to be a useful marker to assess Ae. albopictus spread, providing pronouncedly more information than cox1, including intra-individual, intra-population and inter-population levels, furnishing a complete overview of the evolutionary exchanges followed by this mosquito. Wing morphometry proves to be a useful phenotyping marker, allowing to distinguish different populations at the level of both male and female specimens. Results indicate the need for periodic surveillance monitorings to verify that no Ae. albopictus with high virus transmission capacity is introduced into Europe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235640 | PMC |
http://dx.doi.org/10.1186/s13071-021-04829-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!