Generation of genetically modified human induced pluripotent stem cell lines harboring haploin sufficient or dominant negative variants in the FBN1 gene.

Stem Cell Res

National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, Brazil. Electronic address:

Published: July 2021

Marfan Syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in the FBN1 gene. To investigate the molecular mechanisms of pathogenesis for the syndrome, we genetically modified the FBN1 gene in a line of induced pluripotent stem cells (hiPSCs) derived from a healthy donor using the CRISPR/Cas9 gene editing technology. The sublines described here were characterized according to established criteria and were shown to maintain pluripotency, three germ layer differentiation potential and genomic integrity. These clones can now be used to better understand the pathogenesis of MFS in different cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2021.102434DOI Listing

Publication Analysis

Top Keywords

fbn1 gene
12
genetically modified
8
induced pluripotent
8
pluripotent stem
8
generation genetically
4
modified human
4
human induced
4
stem cell
4
cell lines
4
lines harboring
4

Similar Publications

In 2021, the Indian Undiagnosed Diseases Program was initiated for patients without a definite diagnosis despite extensive evaluation in four participating sites. Between February 2021 and March 2023, a total of 88 patients were recruited and underwent deep phenotyping. A uniform methodology for data re-analysis was implemented as the first step prior to conducting additional genomic testing.

View Article and Find Full Text PDF

Background: Asprosin, a novel adipokine released under fasting conditions, may play a significant role in the pathophysiology of type 2 diabetes mellitus (T2DM). The objective of this study is to investigate the effects of metformin on serum asprosin levels and FBN1 gene expression in white adipose tissue in male rats.

Methods: Thirty-two male Wistar rats were randomly and equally divided into four groups (n = 8): 1.

View Article and Find Full Text PDF

Objective: To determine the types of genetic variants in six Chinese pedigrees affected with Marfan syndrome (MFS) and analyze their clinical characteristics and molecular pathogenesis.

Methods: Six MFS pedigrees presented at the Taizhou Enze Medical Center (Group) between 2017 and 2022 were selected as the study subjects. Clinical data of pedigrees were retrospectively analyzed.

View Article and Find Full Text PDF

Marfan syndrome is an inherited connective tissue disorder that affects the cardiovascular, musculoskeletal, and ocular systems. It is caused by pathogenic variants in the fibrillin-1 gene (). Fibrillin is a primary component of microfibrils, which are found throughout the extracellular matrix (ECM) and provide elasticity and resilience to connective tissue.

View Article and Find Full Text PDF

The zonular fibres are formed primarily of fibrillin-1, a large extracellular matrix (ECM) glycoprotein, and also contain other constituents such as LTBP-2, ADAMTSL6, MFAP-2 and EMILIN-1, amongst others. They are critical for sight, holding the crystalline lens in place and being necessary for accommodation. Zonulopathies refer to conditions in which there is a lack or disruption of zonular support to the lens and may clinically be manifested as ectopia lens (EL)-defined as subluxation of the lens outside of the pupillary plane or frank displacement (dislocation) into the vitreous or anterior segment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!