Contributions of enhanced endogenous microbial metabolism via inoculation with a novel microbial consortium into an anoxic side-stream reactor to in-situ sludge reduction for landfill leachate treatment.

J Environ Manage

Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, South Korea.

Published: October 2021

In-situ sludge reduction plays a significant role in reducing excess sludge production. This study investigated the role of beneficial microorganisms (BM) in the anoxic-oxic-settling-anoxic (A-OSA) process associated with the in-situ sludge reduction efficiency under synthetic landfill leachate treatment. The rates of excess sludge reduction with the inoculation of BM increased up to 53.6% (calculated as total suspended solids) and 38.3% (calculated as total volume), respectively. Side-stream reactors, as important components of the A-OSA process, were further studied to explore change of parameters related to in-situ sludge reduction. With the inoculation of BM, the release and conversion of extracellular polymeric substances and the dehydrogenase activity (increasing rate = 60.9%) were increased. Species richness and microbial diversity, as well as the microbial community composition (e.g., hydrolytic and fermentative bacteria), were improved via bioaugmentation. Moreover, potential gene functions of microorganisms were positively regulated and the abundance of gene expressions (e.g., nirK, norB) for in-situ sludge reduction could be improved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113088DOI Listing

Publication Analysis

Top Keywords

sludge reduction
24
in-situ sludge
20
landfill leachate
8
leachate treatment
8
excess sludge
8
a-osa process
8
reduction inoculation
8
calculated total
8
sludge
7
reduction
6

Similar Publications

Large scale production of insect larvae is considered a sustainable way to upcycle various organic waste- and by-products into more valuable food and feed products. The sustainability of insect larvae production depends on the substrates and species being used, but comparative studies that include both growth and efficiency are lacking. Here we compare larval fitness, including survival, development time, weight, substrate conversion efficiency, substrate reduction, and metabolic parameters across different combinations of densities and waste- and by-product-based substrates on the two fly species, the house fly (Musca domestica) and the black soldier fly (Hermetia illucens).

View Article and Find Full Text PDF

This study evaluates the combined use of H₂O₂ and thermally activated S₂O₈⁻ (T-PDS) for the degradation of phenolic compounds (PhOH) in wastewater, aiming to limit or eliminate sludge production. Phenolic compounds are common in industrial effluents, and their effective removal is crucial for reducing environmental impact. The study employs Response Surface Methodology (RSM) and Principal Component Analysis (PCA) to optimise critical variables such as temperature, pH, and oxidant concentrations.

View Article and Find Full Text PDF

The reuse of electro-coagulated sludge as an adsorbent for Cr(VI) ion reduction was investigated in this study. Electro-coagulated sludge was obtained during the removal of citric acid wastewater by the electrocoagulation process. The following parameters were optimized for Cr(VI) reduction: pH (5-7), initial Cr(VI) concentration (10-50 mg/L), contact time (10-45 min), and adsorbent dosage (0.

View Article and Find Full Text PDF

Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature.

View Article and Find Full Text PDF

The disposal of municipal solid waste (MSW) is a significant source of greenhouse gas (GHG) emissions. As incineration becomes the primary method of MSW disposal in China, MSW incineration (MSWI) plants are expected to play a crucial role in mitigating GHG emissions in the waste sector. This study estimated the quarterly GHG emissions from two representative MSWI plants in Qingdao using a life-cycle assessment (LCA) approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!