Objective: This study presents a quantitative genetic analysis of human anterior dental morphology in a longitudinal sample of known genealogy. The primary aim of this work is to generate a suite of genetic correlations within and between deciduous and permanent characters to access patterns of integration across the diphyodont dental complex.
Design: Data were recorded from casted tooth crowns representing participants of a long-term Australian twin and family study (deciduous n = 290, permanent n = 339). Morphological trait expression was observed and scored following Arizona State University Dental Anthropology System standards. Bivariate genetic correlations were estimated using maximum likelihood variance decomposition models in SOLAR v.8.1.1.
Results: Genetic correlation estimates indicate high levels of integration between antimeres but low to moderate levels among traits within a tooth row. Only 9% of deciduous model comparisons were significant, while pleiotropy was indicated for one third of permanent trait pairs. Canine characters stood out as strongly integrated, especially in the deciduous dentition. For homologous characters across dentitions (e.g., deciduous i shoveling and permanent I shoveling), ∼70% of model comparisons yielded significant genetic correlations.
Conclusions: Patterns of genetic correlation suggest a morphological canine module that spans the primary and secondary dentition. Results also point to the existence of a genetic mechanism conserving morphology across the diphyodont dental complex, such that paired deciduous and permanent traits are more strongly integrated than characters within individual tooth rows/teeth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2021.105168 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!