Up-regulation of heme oxygenase-1 by celastrol alleviates oxidative stress and vascular calcification in chronic kidney disease.

Free Radic Biol Med

Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China. Electronic address:

Published: August 2021

Vascular calcification is very commonly observed in patients with chronic kidney disease (CKD), but there is no efficient therapy available. Oxidative stress plays critical roles in the progression of vascular calcification. Celastrol (Cel), a natural constituent derived from Chinese herbals, exhibits anti-oxidative stress activity. Here, we investigated the effect of celastrol on vascular calcification using vascular smooth muscle cells (VSMCs), arterial rings and CKD rats. Alizarin red staining and gene expression analysis showed that Cel dose-dependently inhibited rat VSMC calcification and osteogenic differentiation. Similarly, ex vivo study revealed that Cel inhibited calcification of rat and human arterial rings. In addition, micro-computed tomography, alizarin red staining and calcium content analysis confirmed that Cel inhibited aortic calcification in CKD rats. Interestingly, Cel treatment increased the mRNA and protein levels of heme oxygenase-1 (HMOX-1), and reduced the levels of reactive oxygen species (ROS) in VSMCs. Furthermore, both pharmacological inhibition of HMOX-1 and knockdown of HMOX-1 by siRNA independently counteracted the inhibitory effect of Cel on vascular calcification. Moreover, knockdown of HMOX-1 prevented Cel treatment-mediated reduction in ROS levels. Finally, Cel treatment reduced Vitamin D3-induced aortic calcification in mice and this effect was blocked by HMOX-1 inhibitor ZnPP9. Collectively, our results suggest that up-regulation of HMOX-1 is required for the inhibitory effect of Cel on vascular calcification. Modulation of HMOX-1 may provide a novel strategy for the treatment of vascular calcification in CKD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2021.06.020DOI Listing

Publication Analysis

Top Keywords

vascular calcification
28
calcification
11
cel
9
heme oxygenase-1
8
oxidative stress
8
vascular
8
chronic kidney
8
kidney disease
8
arterial rings
8
ckd rats
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!