Aquaporin (AQP) transport solutes across cell membranes in both unicellular and multicellular organisms. In this study, the aquaporin CsPrip was identified in Chilo suppressalis, an important pest of rice. CsPrip was comprised of two variants, CsPrip_v1 and CsPrip_v2; the former variant was <103 bp was shorter than the latter, although both exhibited the same open reading frame (ORF). Transmembrane topology and protein structure analyses showed that CsPrip retained the conserved features of water-selective insect AQPs, including six transmembrane domains, two conserved hydrophobic asparagine-proline-alanine motifs and the aromatic/arginine constriction region. Expression in Xenopus oocytes revealed that CsPrip preferentially transported water and urea instead of trehalose and glycerol. The CsPrip transcript was expressed in multiple organs and tissues of C. suppressalis larvae and was most abundant in the hindgut and Malpighian tubules. CsPrip transcription was highest in male adults and was relatively stable throughout development. CsPrip expression in larvae was significantly altered by thermal stress, and relative humidity levels impacted CsPrip transcription in 3rd and 5th instar larvae. This study confirms that the aquaporin CsPrip performs multiple critical functions in maintaining water equilibrium in C. suppressalis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.06.142 | DOI Listing |
Plant Cell Environ
January 2025
Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.
The striped stem borer (Chilo suppressalis, SSB) is a highly destructive insect pest in rice (Oryza sativa). SSB oral secretions (OSs) can induce plant defense responses in rice. However, the specific effectors in SSB OSs that mediate these interactions with rice remain poorly understood.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Institute of Biology, University of Neuchatel, 2000 Neuchatel,Switzerland.
The use of nanoparticles is a promising ecofriendly strategy for mitigating both abiotic and biotic stresses. However, the physiological and defense response mechanisms of plants exposed to multiple stresses remain largely unexplored. Herein, we examined how foliar application of biogenic nanosilica (BNS) impacts rice plant growth, molecular defenses, and metabolic responses when subjected to arsenic (As) toxicity and infested by the insect .
View Article and Find Full Text PDFPest Manag Sci
December 2024
College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Centre of Green Pesticide Invention and Application, Nanjing, China.
Background: The rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), is a damaging pest of rice worldwide. Following the evolution of C. suppressalis resistance to diamide and abamectin insecticides, emamectin benzoate (EB) became a key insecticide for the control of this species in China.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
Background: Ecdysone-induced protein 93 F (E93, also known as Eip93F) plays a crucial role in the reproductive process of numerous insects. This study aims to delineate the function of E93 in Chilo suppressalis and elucidated the regulatory mechanism by which E93 influences the reproduction of C. suppressalis METHODS AND RESULTS: The results of the bioinformatics analysis indicate that C.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!