Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Dedicated cardiac SPECT systems do not typically include an integrated CT scanner and thus attenuation correction requires registration of separately acquired transmission scans. Data consistency conditions are equations that express the redundancy between projections while taking into account the attenuation effects. This study assessed the feasibility of applying exponential data consistency conditions to rebinned pinhole projections for attenuation-map registration in pinhole cardiac SPECT.
Methods: Simulations of an anthropomorphic computer phantom with three different tracer activity distributions were performed with and without clinical levels of noise in the projection data. The first activity distribution contained activity only within the myocardium which satisfied the assumptions of the data consistency conditions. The other two distributions violated these assumptions by adding background activity and uptake in the liver. Simulations included acquisitions with 360, 31, and 9 pinhole projections and detector pixel sizes of 0.75 and 2.5 mm. A metric based on the average difference between pairs of exponential projections was used to evaluate registration accuracy.
Results: When activity is restricted to the myocardium, the registration error was 3.0 mm for 31 noisy pinhole projections with a detector size of 2.5 mm. When activity is added to the background and the liver, a correction for the extra-cardiac activity is needed but when applied, a registration error of 6.0 mm was achieved.
Conclusion: These results suggest that it may be feasible to use exponential data consistency conditions to register pinhole cardiac SPECT and CT transmission data. Taxonomy: 8-6 (IM-SPECT/Registration).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.15058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!