A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Technical Note: Multiple energy extraction techniques for synchrotron-based proton delivery systems may exacerbate motion interplay effects in lung cancer treatments. | LitMetric

Purpose: The multiple energy extraction (MEE) delivery technique for synchrotron-based proton delivery systems reduces beam delivery time by decelerating the beam multiple times during one accelerator spill, but this might cause additional plan quality degradation due to intrafractional motion. We seek to determine whether MEE causes significantly different plan quality degradation compared to single energy extraction (SEE) for lung cancer treatments due to the interplay effect.

Methods: Ten lung cancer patients treated with IMPT at our institution were nonrandomly sampled based on a representative range of tumor motion amplitudes, tumor volumes, and respiratory periods. Dose-volume histogram (DVH) indices from single-fraction SEE and MEE four-dimensional (4D) dynamic dose distributions were compared using the Wilcoxon signed-rank test. Distributions of monitor units (MU) to breathing phases were investigated for features associated with plan quality degradation. SEE and MEE DVH indices were compared in fractionated deliveries of the worst-case patient treatment scenario to evaluate the impact of fractionation.

Results: There were no clinically significant differences in target mean dose, target dose conformity, or dose to organs-at-risk between SEE and MEE in single-fraction delivery. Three patients had significantly worse dose homogeneity with MEE compared to SEE (single-fraction mean D -D increased by up to 9.6% of prescription dose), and plots of MU distribution to breathing phases showed synchronization patterns with MEE but not SEE. However, after 30 fractions the patient in the worst-case scenario had clinically acceptable target dose homogeneity and coverage with MEE (mean D -D increased by 1% compared to SEE).

Conclusions: For some patients with breathing periods close to the mean spill duration, MEE resulted in significantly worse single-fraction target dose homogeneity compared to SEE due to the interplay effect. However, this was mitigated by fractionation, and target dose homogeneity and coverage were clinically acceptable after 30 fractions with MEE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455432PMC
http://dx.doi.org/10.1002/mp.15056DOI Listing

Publication Analysis

Top Keywords

target dose
20
dose homogeneity
16
energy extraction
12
lung cancer
12
plan quality
12
quality degradation
12
mee
10
dose
9
multiple energy
8
synchrotron-based proton
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!