CD36 Ectodomain Detects Apoptosis in Mammalian Cells.

Mol Biotechnol

Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, 781039, Assam, India.

Published: November 2021

The cells that undergo apoptosis show phosphatidylserine (PS) on the cell membrane. The fluorescently labeled hCD36_ecto is staining and detecting apoptotic cells in a flow-based assay with several advantages over Annexin V. The human CD36 ectodomain (hCD36_ecto) is stable for a range of temperatures and experimental conditions and doesn't require Ca for detecting apoptosis and specific towards PS compared to other lipids. The blocking with unlabeled hCD36_ecto reduces the staining of Annexin V-FITC for apoptotic cells, whereas R63A does not affect the binding of Annexin V- FITC to apoptotic cells. It indicates the role of CD36-PS interaction in detecting apoptotic cells. Dual-staining with hCD36_ecto-FITC/PI is universally detecting apoptosis in different nucleated cells or eryptosis in non-nucleated RBCs. Hence, our study highlights the utility of CD36 as a probe to detect apoptosis in mammalian cells. It might be a robust, economical reagent for the scientific community to facilitate their research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-021-00356-1DOI Listing

Publication Analysis

Top Keywords

apoptotic cells
16
cd36 ectodomain
8
apoptosis mammalian
8
cells
8
mammalian cells
8
detecting apoptotic
8
detecting apoptosis
8
apoptosis
5
ectodomain detects
4
detects apoptosis
4

Similar Publications

The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.

View Article and Find Full Text PDF

Geraniol modulates inflammatory and antioxidant pathways to mitigate intestinal ischemia-reperfusion injury in male rats.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.

Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups.

View Article and Find Full Text PDF

This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.

View Article and Find Full Text PDF

In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.

View Article and Find Full Text PDF

Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!