While microbiological resistance to vancomycin in Staphylococcus aureus is rare, clinical vancomycin treatment failures are common, and methicillin-resistant S. aureus (MRSA) strains isolated from patients after prolonged vancomycin treatment failure remain susceptible. Adaptive laboratory evolution was utilized to uncover mutational mechanisms associated with MRSA vancomycin resistance in a physiological medium as well as a bacteriological medium used in clinical susceptibility testing. Sequencing of resistant clones revealed shared and media-specific mutational outcomes, with an overlap in cell wall regulons (walKRyycHI, vraSRT). Evolved strains displayed similar properties to resistant clinical isolates in their genetic and phenotypic traits. Importantly, resistant phenotypes that developed in physiological media did not translate into resistance in bacteriological media. Further, a bacteriological media-specific mechanism for vancomycin resistance associated with a mutated mprF was confirmed. This study bridges the gap between the understanding of clinical and microbiological vancomycin resistance in S. aureus and expands the number of allelic variants (18 ± 4 mutations for the top 5 mutated genes) that result in vancomycin resistance phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233327PMC
http://dx.doi.org/10.1038/s42003-021-02339-zDOI Listing

Publication Analysis

Top Keywords

vancomycin resistance
20
vancomycin
8
staphylococcus aureus
8
vancomycin treatment
8
resistance
7
environmental conditions
4
conditions dictate
4
dictate differential
4
differential evolution
4
evolution vancomycin
4

Similar Publications

The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 11 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics.

View Article and Find Full Text PDF

Detection methods for carbapenem-resistant Pseudomonas aeruginosa in surface water and wastewater.

Sci Total Environ

January 2025

National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Biotechnology, Technical University Delft, Delft, the Netherlands. Electronic address:

Water systems can act as an important reservoir for Pseudomonas aeruginosa, which can pose public health risks during human contact. Carbapenem resistance is one of the most concerning resistances in P. aeruginosa making it a high-priority pathogen according to the World Health Organization (WHO), due to its ability to cause difficult-to-treat infections.

View Article and Find Full Text PDF

Background: Streptococcus suis (S. suis) is a major swine pathogen and a significant zoonotic agent, causing substantial economic losses in the swine sector and having considerable public health importance. The control and management of S.

View Article and Find Full Text PDF

Aims: Enterococcus faecium is one of the most important opportunistic pathogens threatening human health worldwide. Resistance to vancomycin (VAN) is increasing at an alarming rate. Resurrecting antibiotics using a combination approach is a promising alternative avenue.

View Article and Find Full Text PDF

Background: Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is associated with high rates of treatment failure, even when antibiotics showing in vitro susceptibility are used. Early optimization of therapy is crucial to reduce morbidity and mortality. Building on our previous research on carbapenem therapy for methicillin-susceptible S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!