A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mesna ameliorates acute lung injury induced by intestinal ischemia-reperfusion in rats. | LitMetric

Mesna ameliorates acute lung injury induced by intestinal ischemia-reperfusion in rats.

Sci Rep

Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Asharquia, Egypt.

Published: June 2021

The lung is severely affected by intestinal ischemia-reperfusion (I-R) injury. Mesna, a thiol compound, possess anti-inflammatory and antioxidant properties. We aimed in the present work to explore the potential beneficial effects of Mesna on the acute lung damage mediated by intestinal I-R in a rat model. Forty male adult albino rats were randomly separated into; control, intestinal I-R, Mesna I and Mesna II groups. Mesna was administered by intraperitoneal injection at a dose of 100 mg/kg, 60 min before ischemia (Mesna I) and after reperfusion (Mesna II). Arterial blood gases and total proteins in bronchoalveolar lavage (BAL) were measured. Lung tissue homogenates were utilized for biochemical assays of proinflammatory cytokines and oxidative stress markers. Lung specimens were managed for examination by light and electron microscopy. Our results revealed that Mesna attenuated the histopathological changes and apoptosis of the lung following intestinal I-R. Mesna also recovered systemic oxygenation. Mesna suppressed neutrophil infiltration (as endorsed by the reduction in MPO level), reduced ICAM-1 mRNA expression, inhibited NF-κB pathway and reduced the proinflammatory cytokines (TNF-α, IL-1β and IL-6) in the lung tissues. Mesna maintained the antioxidant profile as evidenced by the elevation of the tissue GPx and SOD and down-regulation of HSP70 immune-expressions. Accordingly, Mesna treatment can be a promising way to counteract remote injury of the lung resulted from intestinal I-R.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233331PMC
http://dx.doi.org/10.1038/s41598-021-92653-7DOI Listing

Publication Analysis

Top Keywords

intestinal i-r
16
mesna
13
lung
8
acute lung
8
intestinal ischemia-reperfusion
8
i-r mesna
8
proinflammatory cytokines
8
lung intestinal
8
intestinal
6
i-r
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!