Possibility of information encoding/decoding using the memory effect in fractional-order capacitive devices.

Sci Rep

Department of Electrical Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.

Published: June 2021

In this study, we show that the discharge voltage pattern of a supercapacitor exhibiting fractional-order behavior from the same initial steady-state voltage into a constant resistor is dependent on the past charging voltage profile. The charging voltage was designed to follow a power-law function, i.e. [Formula: see text], in which [Formula: see text] (charging time duration between zero voltage to the terminal voltage [Formula: see text]) and p ([Formula: see text]) act as two variable parameters. We used this history-dependence of the dynamic behavior of the device to uniquely retrieve information pre-coded in the charging waveform pattern. Furthermore, we provide an analytical model based on fractional calculus that explains phenomenologically the information storage mechanism. The use of this intrinsic material memory effect may lead to new types of methods for information storage and retrieval.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233438PMC
http://dx.doi.org/10.1038/s41598-021-92568-3DOI Listing

Publication Analysis

Top Keywords

[formula text]
16
charging voltage
8
text] [formula
8
voltage
6
possibility encoding/decoding
4
encoding/decoding memory
4
memory fractional-order
4
fractional-order capacitive
4
capacitive devices
4
devices study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!