When a body is decomposed, hard tissues such as teeth may provide the only DNA source for human identification. There is currently no consensus as to the best DNA extraction method, and there is a lack of empirical data regarding tooth morphotype and condition that may impact DNA recovery. Therefore, this study sought to investigate which variables significantly improved DNA concentration, integrity and profiling success. A total of 52 human teeth were assessed, representing all tooth morphotypes from three deceased individuals. DNA was extracted using both the QIAamp® DNA Investigator Kit and the phenol-chloroform method. DNA concentration and degradation index were assessed using real time PCR, prior to conventional DNA profiling. Contrary to international guidelines promoting the use of molars, DNA profiling from molars was the least successful, with premolars, followed by canines, performing the best. The presence of fillings reduced the DNA quantity and quality obtained and may explain the poor performance of molars. DNA from the maxillae were significantly less degraded when the QIAamp® was used, although this did not influence DNA profiling success. A significant increase in DNA concentration, integrity and profiling success was observed in diseased teeth (periodontitis) compared to those without disease. This may be due to increased white blood cell presence at the site. There was no significant difference in DNA profiling success between the two DNA extraction methods. However, different teeth yielded failed DNA profiles for each extraction method, suggesting that repeated attempts, using alternative DNA extraction methods, is recommended. The recovery of additional DNA profiling information from degraded samples may help to ultimately reduce the burden of unidentified human remains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scijus.2021.05.005 | DOI Listing |
Adv Sci (Weinh)
January 2025
Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.
Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.
View Article and Find Full Text PDFBrain Pathol
January 2025
Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Hospital Organization, Tokyo, Japan.
The shift toward a histo-molecular approach in World Health Organization classification of central nervous system tumors (WHO CNS5) emphasizes the critical role of molecular testing, such as next-generation sequencing (NGS) and DNA methylation profiling, for accurate diagnosis. However, implementing these advanced techniques is particularly challenging in resource-constrained countries. To address this, the Asian Oceanian Society of Neuropathology committee for Adapting Diagnostic Approaches for Practical Taxonomy in Resource-Restrained Regions (AOSNP-ADAPTR) was initiated to help pathologists in resource-limited regions to implement WHO CNS5 diagnoses using simpler diagnostic tools, mainly immunohistochemistry.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France.
Lineage tracing methods have extensively advanced our understanding of physiological cell behaviour in vivo and in situ and have vastly contributed to decipher the phylogeny and cellular hierarchies during normal and tumour development. In recent years, increasingly complex systems have been developed to track thousands of cells within a given tissue or even entire organisms. Cellular barcoding comprises all techniques designed to genetically label single cells with unique DNA sequences or with a combination of fluorescent proteins, in order to trace their history and lineage production in space and time.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany.
Background: Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome characterized by a high familial incidence of various malignancies. It results from pathogenic/likely pathogenic heterozygous constitutional variants of the TP53 gene. Due to impaired DNA damage repair, conventional cytotoxic therapies or radiotherapy should be avoided whenever feasible to mitigate the high incidence of treatment-related secondary malignancies in these patients.
View Article and Find Full Text PDFAIDS
January 2025
Departments of Medicine.
Objective: To discover microRNA (miRNA)-RNA transcript interactions dysregulated in brains from persons with HIV-associated neurocognitive disorder (HAND), we investigated RNA expression using machine learning tools.
Design: Brain-derived host RNA transcript and miRNA expression was examined from persons with or without HAND using bioinformatics platforms.
Methods: By combining next generation sequencing, droplet digital (dd)PCR quantitation of HIV-1 genomes, with bioinformatics and statistical tools, we investigated differential RNA expression in frontal cortex from persons without HIV (HIV[-]), with HIV without brain disease (HIV[+]), with HIV-associated neurocognitive disorder (HAND), or HAND with encephalitis (HIVE).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!