Identification of incinerated human remains may rely on genetic analysis of burned bone which can prove far more challenging than fresh tissues. Severe thermal insult results in the destruction or denaturation of DNA in soft tissues, however genetic material may be preserved in the skeletal tissues. Considerations for DNA retrieval from these samples include low levels of exogenous DNA, the dense, mineralised nature of bone, and the presence of contamination, and qPCR inhibitors. This review collates current knowledge in three areas relating to optimising DNA recovery from burned bone: 1) impact of burning on bone and subsequent effects on sample collection, 2) difficulties of preparing burned samples for DNA extraction, and 3) protocols for bone decalcification and DNA extraction. Bone decalcification and various DNA extraction protocols have been tested and optimised for ancient bone, suggesting that prolonged EDTA (Ethylenediaminetetraacetic acid) demineralisation followed by solid-phased silica-based extraction techniques provide the greatest DNA yield. However, there is significantly less literature exploring the optimal protocol for incinerated bones. Although burned bone, like ancient and diagenetic bone, can be considered "low-copy", the taphonomic processes occurring are likely different. As techniques developed for ancient samples are tailored to deal with bone that has been altered in a particular way, it is important to understand if burned bone undergoes similar or different changes. Currently the effects of burning on bone and the DNA within it is not fully understood. Future research should focus on increasing our understanding of the effects of heat on bone and on comparing the outcome of various DNA extraction protocols for these tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scijus.2021.03.006DOI Listing

Publication Analysis

Top Keywords

burned bone
20
dna extraction
16
bone
14
extraction protocols
12
dna
11
burning bone
8
bone decalcification
8
decalcification dna
8
burned
6
extraction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!