This work is devoted to studying the effects of non-magnetic shell coating on nanoparticles in a low frequency alternating magnetic field (LF AMF) on tumor cells in vitro. Two types of iron oxide nanoparticles with the same magnetic core with and without silica shells were synthesized. Nanoparticles with silica shells significantly decreased the viability of PC3 cancer cells in a low frequency alternating magnetic field according to the cytotoxicity test, unlike uncoated nanoparticles. We showed that cell death results from the intracellular membrane integrity failure, and the calcium ions concentration increase with the subsequent necrosis. Transmission electron microscopy images showed that the uncoated silica nanoparticles are primarily found in an aggregated form in cells. We believe that uncoated nanoparticles lose their colloidal stability in an acidic endosomal environment after internalization into the cell due to surface etching and the formation of aggregates. As a result, they encounter high endosomal macromolecular viscosity and become unable to rotate efficiently. We assume that effective rotation of nanoparticles causes cell death. In turn, silica shell coating increases nanoparticles stability, preventing aggregation in endosomes. Thus, we propose that the colloidal stability of magnetic nanoparticles inside cells is one of the key factors for effective magneto-mechanical actuation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.111931DOI Listing

Publication Analysis

Top Keywords

shell coating
12
low frequency
12
frequency alternating
12
alternating magnetic
12
magnetic field
12
nanoparticles
10
non-magnetic shell
8
magnetic nanoparticles
8
cancer cells
8
cells low
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!