Purpose: Several magnetic resonance imaging (MRI) techniques exploit the difference in magnetic susceptibilities between tissues, but systematic measurements of tissue susceptibility are lacking. Furthermore, there is the question as to whether chemical fixation that is used for ex vivo MRI studies, affects the magnetic properties of the tissue. Here, we determined the magnetic susceptibility and water content of fresh and chemically fixed mouse tissue.

Methods: Mass susceptibility of brain, heart, liver and skeletal muscle samples were determined on a vibrating sample magnetometer at room temperature. Measurements at 50, 125, 200 and 295 K were performed to assess the temperature dependence of susceptibility. Moreover, we measured water content of fresh and fixed samples.

Results: All samples show mass susceptibilities between -0.068 and -1.929 × 10 m/kg, compared to -9.338 × 10 m/kg of double distilled water. Heart tissue has a more diamagnetic susceptibility than the other tissues. Compared to fresh tissue, fixed tissue has a less diamagnetic susceptibility. Fixed tissue was not different in water content to fresh tissue and showed no consistent dependence of susceptibility with temperature, whereas fresh tissue shows a decrease to at least 125 K, indicative of a paramagnetic component.

Conclusions: Biological tissues are diamagnetic in comparison to water, where the heart is more diamagnetic than the other tissues, with paramagnetic contributions. Fixation rendered tissue less diamagnetic compared to fresh tissue. Our measurements revealed differences in tissue susceptibility between VSM and QSM, inviting more research to compare susceptibility-based MRI methods with physical measurements of tissue susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2021.06.014DOI Listing

Publication Analysis

Top Keywords

fresh tissue
16
tissue
13
tissue susceptibility
12
water content
12
content fresh
12
tissue diamagnetic
12
susceptibility
10
magnetic susceptibility
8
fresh fixed
8
fixed mouse
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!