Structural basis of substrate specificity in human cytidine deaminase family APOBEC3s.

J Biol Chem

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. Electronic address:

Published: August 2021

The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC motif, A3A can accommodate the CCC motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313598PMC
http://dx.doi.org/10.1016/j.jbc.2021.100909DOI Listing

Publication Analysis

Top Keywords

substrate specificities
12
structural basis
8
basis substrate
8
substrate specificity
8
human cytidine
8
cytidine deaminase
8
deaminase family
8
family apobec3s
8
crystal structures
8
substrate
7

Similar Publications

Cyclic lipopeptides (CLPs) produced by the genus Bacillus are amphiphiles composed of hydrophilic amino acid and hydrophobic fatty acid moieties and are biosynthesised by non-ribosomal peptide synthetases (NRPSs). CLPs are produced as a mixture of homologues with different fatty acid moieties, whose length affects CLP activity. Iturin family lipopeptides are a family of CLPs comprising cyclic heptapeptides and β-amino fatty acids and have antimicrobial activity.

View Article and Find Full Text PDF

Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity.

View Article and Find Full Text PDF

Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Lipotoxicity.

Antioxid Redox Signal

January 2025

Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.

Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons.

View Article and Find Full Text PDF

Enzyme engineering is limited by the challenge of rapidly generating and using large datasets of sequence-function relationships for predictive design. To address this challenge, we develop a machine learning (ML)-guided platform that integrates cell-free DNA assembly, cell-free gene expression, and functional assays to rapidly map fitness landscapes across protein sequence space and optimize enzymes for multiple, distinct chemical reactions. We apply this platform to engineer amide synthetases by evaluating substrate preference for 1217 enzyme variants in 10,953 unique reactions.

View Article and Find Full Text PDF

Phosphorylation of substrates by cyclin-dependent kinases (CDKs) is the driving force of cell cycle progression. Several CDK-activating cyclins are involved, yet how they contribute to substrate specificity is still poorly understood. Here, we discover that a positively charged pocket in cyclin B1, which is exclusively conserved within B-type cyclins and binds phosphorylated serine- or threonine-residues, is essential for correct execution of mitosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!