The cAMP response element-binding protein (CREB) is an important regulator of cell growth, metabolism, and synaptic plasticity. CREB is activated through phosphorylation of an evolutionarily conserved Ser residue (S133) within its intrinsically disordered kinase-inducible domain (KID). Phosphorylation of S133 in response to cAMP, Ca, and other stimuli triggers an association of the KID with the KID-interacting (KIX) domain of the CREB-binding protein (CBP), a histone acetyl transferase (HAT) that promotes transcriptional activation. Here we addressed the mechanisms of CREB attenuation following bursts in CREB phosphorylation. We show that phosphorylation of S133 is reversed by protein phosphatase 2A (PP2A), which is recruited to CREB through its B56 regulatory subunits. We found that a B56-binding site located at the carboxyl-terminal boundary of the KID (BS2) mediates high-affinity B56 binding, while a second binding site (BS1) located near the amino terminus of the KID mediates low affinity binding enhanced by phosphorylation of adjacent casein kinase (CK) phosphosites. Mutations that diminished B56 binding to BS2 elevated both basal and stimulus-induced phosphorylation of S133, increased CBP interaction with CREB, and potentiated the expression of CREB-dependent reporter genes. Cells from mice harboring a homozygous Creb mutation that disrupts BS2 exhibited increased S133 phosphorylation stoichiometry and elevated transcriptional bursts to cAMP. These findings provide insights into substrate targeting by PP2A holoenzymes and establish a new mechanism of CREB attenuation that has implications for understanding CREB signaling in cell growth, metabolism, synaptic plasticity, and other physiologic contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294589 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100908 | DOI Listing |
Front Pharmacol
January 2025
Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
Introduction: Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC).
Methods: The study was divided into two parts.
J Neurochem
January 2025
Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production.
View Article and Find Full Text PDFJ Biol Chem
January 2025
The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China. Electronic address:
Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) is one of the most important pathogenic mechanisms in lens fibrotic disorders, and the regulatory mechanisms of EMT have not been fully understood. Here, we demonstrate that the cAMP-response element binding protein (CREB) can regulate lens EMT in a phosphorylation-dependent and phosphorylation-independent manners with dual mechanisms. First, CREB-S133 phosphorylation is implicated in TGFβ-induced EMT of mouse LECs and also in injury-induced mouse anterior subcapsular cataract model.
View Article and Find Full Text PDFNeurochem Res
November 2024
Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
The dopamine D1-like receptor is a dopamine (DA) receptor regulating diverse brain functions. Once the dopamine D1-like receptor is activated, it induces activation of the Protein Kinase A (PKA) that phosphorylates the cAMP Response Element-Binding (CREB) transcription factor, which once active elicits the expression of the critical synaptic elements Activity-regulated cytoskeleton-associated (Arc) and the Brain-Derived Neurotrophic Factor (BDNF). The temporality and subcellular localization of proteins impact brain function.
View Article and Find Full Text PDFMol Metab
December 2024
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!