The unexpected discovery of non-avian dinosaurs from Arctic and Antarctic settings has generated considerable debate about whether they had the capacity to reproduce at high latitudes-especially the larger-bodied, hypothetically migratory taxa. Evidence for dinosaurian polar reproduction remains very rare, particularly for species that lived at the highest paleolatitudes (>75°). Here we report the discovery of perinatal and very young dinosaurs from the highest known paleolatitude for the clade-the Cretaceous Prince Creek Formation (PCF) of northern Alaska. These data demonstrate Arctic reproduction in a diverse assemblage of large- and small-bodied ornithischian and theropod species. In terms of overall diversity, 70% of the known dinosaurian families, as well as avialans (birds), in the PCF are represented by perinatal individuals, the highest percentage for any North American Cretaceous formation. These findings, coupled with prolonged incubation periods, small neonate sizes, and short reproductive windows suggest most, if not all, PCF dinosaurs were nonmigratory year-round Arctic residents. Notably, we reconstruct an annual chronology of reproductive events for the ornithischian dinosaurs using refined paleoenvironmental/plant phenology data and new insights into dinosaur incubation periods. Seasonal resource limitations due to extended periods of winter darkness and freezing temperatures placed severe constraints on dinosaurian reproduction, development, and maintenance, suggesting these taxa showed polar-specific life history strategies, including endothermy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2021.05.041 | DOI Listing |
Nat Commun
January 2025
Atomic and Mass Spectrometry-A&MS research unit, Department of Chemistry, Ghent University, Ghent, Belgium.
The Chicxulub asteroid impact event at the Cretaceous-Paleogene (K-Pg) boundary ~66 Myr ago is widely considered responsible for the mass extinction event leading to the demise of the non-avian dinosaurs. Short-term cooling due to massive release of climate-active agents is hypothesized to have been crucial, with S-bearing gases originating from the target rock vaporization considered an important driving force. Yet, the magnitude of the S release remains poorly constrained.
View Article and Find Full Text PDFBiol Lett
January 2025
School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
Dinosaur locomotor biomechanics are of major interest. Locomotion of an animal affects many, if not most, aspects of life reconstruction, including behaviour, performance, ecology and appearance. Yet locomotion is one aspect of non-avian dinosaurs that we cannot directly observe.
View Article and Find Full Text PDFPeerJ
December 2024
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
, the earliest known ceratopsian, is represented by dozens of specimens of different sizes collected from the Upper Jurassic of the Junggar Basin, northwestern China. Here, we present the first comprehensive study on the bone histology of based on ten specimens varying in size. Four ontogenetic stages are recognized: early juvenile, late juvenile, subadult, and adult.
View Article and Find Full Text PDFJ Anat
November 2024
CR2P, UMR 7207CNRS/MNHN/Sorbonne Université, Muséum National d'Histoire Naturelle, Bâtiment de Géologie Case Postale 48, Paris, France.
Biol Lett
October 2024
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK.
Dinosaurs potentially originated in the mid-palaeolatitudes of Gondwana 245-235 million years ago (Ma) and may have been restricted to cooler, humid areas by low-latitude arid zones until climatic amelioration made northern dispersals feasible 215 Ma. However, this scenario is challenged by new Carnian Laurasian fossils and evidence that even the earliest dinosaurs had adaptations for arid conditions. After becoming globally distributed in the Early-Middle Jurassic (200-160 Ma), dinosaurs experienced vicariance driven by Pangaean fragmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!