Impact of Antibiotic-Induced Depletion of Gut Microbiota and Selenium Supplementation on Plasma Selenoproteome and Metal Homeostasis in a Mice Model.

J Agric Food Chem

Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Avenue, 21007 Huelva, Spain.

Published: July 2021

Selenium (Se) is a micronutrient involved in important health functions and it has been suggested to shape gut microbiota. Limited information on Se assimilation by gut microbes and the possible link with selenoproteins are available. For this purpose, conventional and gut microbiota-depleted BALB/c mice were fed a Se-supplemented diet. The absolute quantification of mice plasma selenoproteins was performed for the first time using heteroatom-tagged proteomics. The gut microbiota profile was analyzed by 16S rRNA gene sequencing. Se-supplementation modulated the concentration of the antioxidant glutathione peroxidase and the Se-transporter selenoalbumin as well as the metal homeostasis, being influenced by microbiota disruption, which suggests an intertwined mechanism. Se also modulated microbiota diversity and richness and increased the relative abundance of some health-relevant taxa (, families , , and genus). This study demonstrated the potential beneficial effects of Se on gut microbiota, especially after antibiotic-treatment and the first associations between specific bacteria and plasma selenoproteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161447PMC
http://dx.doi.org/10.1021/acs.jafc.1c02622DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
metal homeostasis
8
plasma selenoproteins
8
gut
6
microbiota
6
impact antibiotic-induced
4
antibiotic-induced depletion
4
depletion gut
4
microbiota selenium
4
selenium supplementation
4

Similar Publications

Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.

Methods: This study examined the effect of d-tagatose on the probiotic properties of L.

View Article and Find Full Text PDF

Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C.

View Article and Find Full Text PDF

Gut microbiota and its impact on critical illness.

Curr Opin Crit Care

January 2025

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS).

Purpose Of Review: This narrative review discusses the mechanisms connecting gut dysbiosis to adverse clinical outcomes in critically ill patients and explores potential therapeutic strategies.

Recent Findings: In recent years, the study of microbiota in ICUs has gained attention because of its potential effects on patient outcomes. Critically ill patients often face severe conditions, which can compromise their immune systems and lead to opportunistic infections from bacteria typically harmless to healthy individuals.

View Article and Find Full Text PDF

Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.

View Article and Find Full Text PDF

Purpose Of Review: Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs).

Recent Findings: The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!