Phase-selective gelation refers to the selective gelation of one phase in an immiscible mixture. Thus far, all such examples have involved a molecular gelator forming nanofibers in (and thus gelling) the oil phase in an oil/water mixture. Here, for the first time, we report the counterpart to the above phenomenon, i.e., selective gelation of the in an oil/water mixture (while leaving the oil undisturbed). This has been a challenging problem because moieties that gel water tend to be either amphiphilic or oil-soluble; thus, if combined with an oil/water mixture, they invariably form an emulsion. Our approach solves this problem by exploiting the tunable self-assembly of laponite (LAP) nanoparticles. Initially, LAP nanoparticles (25 nm disks) are dispersed in water, where they remain unaggregated due to the steric stabilization provided by a triblock copolymer (Pluronic P123) adsorbed on their surface. Thus, the dispersion is initially a low-viscosity sol. When an immiscible oil such as hexadecane is introduced above the sol, the mixture remains biphasic, and both phases remain unaffected. Next, an organic acid such as butanoic acid (BA) is added to the oil. The BA is oil-soluble but also has limited solubility in the water. Over about 30 min, some of the BA enters the water, whereupon it "" the self-assembly of LAP particles into a three-dimensional "house-of-cards" network. Ultimately, the water phase is converted into a homogeneous gel with a sufficient yield stress: the aqueous gel holds its weight in the inverted vial while the oil phase remains a thin liquid that can be poured out of the vial. On the whole, the concept advanced here is about activating nanoparticle assembly in water . This concept could prove useful in conducting certain separations or reactions in the laboratory as well as in enhanced oil recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c00647 | DOI Listing |
Int J Biol Macromol
January 2025
Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).
View Article and Find Full Text PDFLangmuir
January 2025
College of Light Industry and Materials, Chengdu Textile College, Chengdu, Sichuan 610039, China.
The treatment of oily wastewater and oil/water mixtures has received more and more attention. In this study, a Zn-MOF (ZIF-8) decorated polyimide (PI) nanofiber membrane with triple self-cleaning performance was constructed, and the decoration of ZIF-8 on the PI membrane improved the hydrophilicity of the composite membrane, which further enhanced the underwater oil resistance, and the mechanical properties of the membranes improved significantly with the increase of in situ growth time. In addition, the inherent photocatalytic and antibacterial properties of ZIF-8 endowed the membranes with fantastic performance.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:
Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India.
This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.
View Article and Find Full Text PDFACS Omega
January 2025
Hildebrand Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, 200 E Dean Keeton, Austin, Texas 78712, United States.
Alkali-surfactant-polymer (ASP) flooding can reduce oil-water interfacial tension to ultralow values and mobilize oil in petroleum reservoirs. Surfactant is consumed by adsorption/retention which is significant in clay-rich reservoirs. Alkali can be added to surfactant-polymer formulations to minimize surfactant adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!