The highly active and selective carbon dioxide reduction reaction (CORR) can generate valuable products such as fuels and chemicals and reduce the emission of greenhouse gases. Single-atom catalysts (SACs) and dual-metal-sites catalysts (DMSCs) with high activity and selectivity are superior electrocatalysts for the CORR as they have higher active site utilization and lower cost than traditional noble metals. Herein, we explore a rational and creative density-functional-theory-based, machine-learning-accelerated (DFT-ML) method to investigate the CORR catalytic activity of hundreds of transition metal phthalocyanine (Pc) DMSCs. The gradient boosting regression (GBR) algorithm is verified to be the most desirable ML model and is used to construct catalytic activity prediction, with a root-mean-square error of only 0.08 eV. The results of ML prediction demonstrate Ag-MoPc as a promising CORR electrocatalyst with the limiting potential of only -0.33 V. The DFT-ML hybrid scheme accelerates the efficiency 6.87 times, while the prediction error is only 0.02 V, and it sheds light on the path to accelerate the rational design of efficient catalysts for energy conversion and conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c01526 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!