Purpose: The aim of this study was to analyze the segmented layers of the macula in patients with obstructive sleep apnea and hypopnea syndrome (OSAS) using spectral domain optical coherence tomography (SD-OCT).

Material And Methods: This single-center, cross-sectional study included 31 OSAS patients and 31 age- and gender-matched control subjects. SD-OCT and overnight polysomnography were performed on all participants. The OSAS patients were categorized according to disease severity (mild, moderate, severe). The groups were compared in respect of each segmented macular layer through the use of segmentation software on SD-OCT. Total retinal thickness (RT), peripapillary retina nerve fiber layer (pRNFL) thickness, central corneal thickness (CCT) and intraocular pressure (IOP) values were also compared between the groups.

Results: Mean CCT (p:0.015) and nasal pRNFL values (p:0.042) were lower and mean IOP was higher (p:0.018) in OSAS patients than in the control group. The statistical analysis revealed significantly thinner total RT, inner retinal layers (IRL), outer retinal layers (ORL), photoreceptor layers (PRL) and ganglion cell layer (GCL) thicknesses in the OSAS groups compared to healthy subjects. No significant differences were found between the three OSAS subgroups in all segmented macular layers and pRNFL measurements.

Conclusion: The results of this study showed relatively thinner nasal pRNFL, total RT, IRL, ORL, PRL and GCL layers in OSAS patients compared to healthy subjects. Moreover, this thinning of the segmented layers was unrelated to disease severity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10792-021-01937-4DOI Listing

Publication Analysis

Top Keywords

osas patients
16
retinal layers
12
disease severity
12
layers
9
outer retinal
8
ganglion cell
8
cell layer
8
photoreceptor layers
8
obstructive sleep
8
sleep apnea
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!