Surface Triple Junctions Govern the Strength of a Nanoscale Solid.

Phys Rev Lett

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.

Published: June 2021

Surface triple junctions (STJs), i.e., the termination lines of grain boundaries at solid surface, are the common line defects in polycrystalline materials. Compared with planar defects such as grain boundaries and surfaces, STJ lines are usually overlooked in a material's strengthening although abundant atoms may reside at STJs in many nanomaterials. In this study, by in situ compression of coarse-grained and nanocrystalline nanoporous gold samples in an electrochemical environment, the effect of STJs on the strength of nanoporous gold was successfully decoupled from grain-boundary and surface effects. We found that the strength of nanoporous gold became sensitive to STJ modification when ligament size was decreased to below ∼100  nm, indicating that STJs started to influence ligament strength at sub-100 nm scale. This STJ effect was associated with the emission of dislocations from STJs during plastic deformation. Our findings strongly suggest that the structure and chemistry at STJs should be considered in understanding the mechanical response of sub-100 nm scale materials.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.235501DOI Listing

Publication Analysis

Top Keywords

nanoporous gold
12
surface triple
8
triple junctions
8
solid surface
8
grain boundaries
8
strength nanoporous
8
sub-100 nm scale
8
stjs
6
surface
4
junctions govern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!