A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A study on LiLaTiO solid electrolyte with high ionic conductivity and its application in flexible all-solid-state batteries. | LitMetric

A study on LiLaTiO solid electrolyte with high ionic conductivity and its application in flexible all-solid-state batteries.

Nanoscale

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen 518060, China.

Published: July 2021

As flexible all-solid-state batteries are highly safe and light weight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be done by using highly conductive solid-state electrolytes. Herein, we prepare a crystallized and amorphous LLTO electrolyte through magnetron sputtering and investigate the effect of heat treatment on its ionic conductivity. The maximum ionic conductivity of the electrolyte is 9.44 × 10-5 S cm-1 at 140 °C. Electrode fracture after multiple cycles is the chief reason for the failure of solid-state batteries. To improve their cycle performance, we use LiNi0.5Co0.3Mn0.2O2 (NCM) with a volume change rate of 5% as the cathode and LTO with a volume change rate of 2% as the anode. A battery with a high output voltage using an internal series is prepared to enhance its application value. The output voltage of a single-layer NCM/LLTO/LTO battery is 2-2.4 V, while that of a two-layer NCM/LLTO/LTO battery can be 4.8 V in series. Owing to the small volume change rate of the electrode, the battery can be cycled up to 500 times, and the capacity of the battery remains at 89.2% of the initial state even after bending.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr02427bDOI Listing

Publication Analysis

Top Keywords

ionic conductivity
12
volume change
12
change rate
12
flexible all-solid-state
8
all-solid-state batteries
8
output voltage
8
ncm/llto/lto battery
8
battery
5
study lilatio
4
lilatio solid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!