Diabetic nephropathy (DN) is the most important complication in patients with diabetes. The accumulation of advanced glycation end-products (AGEs) is the main reason for the development of DN. In this study, we investigated the mechanism of buckwheat hull flavonoids to break AGEs in vitro by measuring fluorescence analysis, three-dimensional fluorescence, protein molecular weight, free amino groups, and the sulfhydryl group content. Proteomics analysis was used to determine the effect of total buckwheat hull flavonoids (TBHF) intervention on protein differential expression in the kidney of db/db mice. The results showed that buckwheat hull flavonoids were potent in breaking AGEs in vitro, and they protected mice kidneys by regulating the renal AGE-RAGE pathway. This study lays a strong experimental and theoretical foundation for the development of new lysing agents to break AGEs. The findings should make an important contribution to the field of flavonoids in improving the application of diabetic nephropathy in the diet.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1fo01170gDOI Listing

Publication Analysis

Top Keywords

buckwheat hull
16
diabetic nephropathy
12
hull flavonoids
12
advanced glycation
8
glycation end-products
8
break ages
8
ages vitro
8
flavonoids
5
flavonoids derived
4
buckwheat
4

Similar Publications

The influence of the addition of ground buckwheat hulls on the properties of biocomposite on the basis of 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) is presented here. The changes in the material after repeated reprocessing-up to five recycling cycles-are written in the paper. Analysis of the shrinkage, water adsorption, selected mechanical properties, tensile impact strength, hardness and the microstructure of the surface layer was performed.

View Article and Find Full Text PDF

Enzyme immobilization is a crucial method in biotechnology and organic chemistry that significantly improves the stability, reusability, and overall effectiveness of enzymes across various applications. Lipases are one of the most frequently applied enzymes in food. The current study investigated the potential of utilizing selected agri-food and waste materials-buckwheat husks, pea hulls, loofah sponges, and yerba mate waste-as carriers for the immobilization of Sustine 121 lipase and yeast biomass as whole-cell biocatalyst and lipase sources.

View Article and Find Full Text PDF

LC-MS and MALDI-MSI-based metabolomic approaches provide insights into the spatial-temporal metabolite profiles of Tartary buckwheat achene development.

Food Chem

August 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China. Electronic address:

Tartary buckwheat, celebrated as the "king of grains" for its flavonoid and phenolic acid richness, has health-promoting properties. Despite significant morphological and metabolic variations in mature achenes, research on their developmental process is limited. Utilizing Liquid chromatography-mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging, we conducted spatial-temporal metabolomics on two cultivars during achene development.

View Article and Find Full Text PDF

Integrative Dissection of Lignin Composition in Tartary Buckwheat Seed Hulls for Enhanced Dehulling Efficiency.

Adv Sci (Weinh)

May 2024

State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475004, China.

The rigid hull encasing Tartary buckwheat seeds necessitates a laborious dehulling process before flour milling, resulting in considerable nutrient loss. Investigation of lignin composition is pivotal in understanding the structural properties of tartary buckwheat seeds hulls, as lignin is key determinant of rigidity in plant cell walls, thus directly impacting the dehulling process. Here, the lignin composition of seed hulls from 274 Tartary buckwheat accessions is analyzed, unveiling a unique lignin chemotype primarily consisting of G lignin, a common feature in gymnosperms.

View Article and Find Full Text PDF

Bread is a widely consumed food that has often been used as a vehicle for functional ingredients such as dietary fibre. Fibre-rich breads have beneficial physiological effects on health, helping to combat chronic pathologies such as cardiovascular disease, diabetes, and certain types of colon cancer. The aim of this study is to evaluate the technological and nutritional effects of the inclusion of buckwheat hull particles (BH) at two addition levels (3 and 6%) and two particle sizes (fine, D: 62.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!