Robust LiPSI Interlayer to Stabilize the Tailored Electrolyte LiSnPSF/Li Metal Interface.

ACS Appl Mater Interfaces

State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Published: July 2021

All-solid-state lithium-metal batteries (ASSLMBs) with sulfide electrolytes have attracted attention owing to their superior safety and high energy density. However, interfacial instability of sulfide electrolytes against Li metal still hinders their applications. Herein, F-doping is adopted to optimize the structure of LiSnPS. It is demonstrated that the LiSnPSF (LSPSF) electrolyte exhibits a high ionic conductivity of 6.4 mS cm because of F-doping, which can reduce the impurity LiSnS and generate Li vacancies. In addition, the LiPSI (LPSI) glass-ceramic interlayer is employed to enhance the interfacial stability between the sulfide electrolyte and Li metal by restraining the reduction of Sn cations, as indicated by X-ray photoelectron spectroscopy (XPS). As a result, the assembled ASSLMBs with the LPSI interlayer deliver high initial discharge capacity and remarkable cycling stability. This work provides a new design route for manufacturing high-performance ASSLMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07947DOI Listing

Publication Analysis

Top Keywords

sulfide electrolytes
8
robust lipsi
4
lipsi interlayer
4
interlayer stabilize
4
stabilize tailored
4
tailored electrolyte
4
electrolyte lisnpsf/li
4
lisnpsf/li metal
4
metal interface
4
interface all-solid-state
4

Similar Publications

Cadmium (Cd), as one of the most toxic nonessential elements, severely prohibits plant growth and development. Hydrogen sulfide (HS) and methyl jasmonate (MeJA) play essential roles in plant response to abiotic stress. However, the potential mechanism of HS and MeJA in alleviating Cd stress in plants remains unclear.

View Article and Find Full Text PDF

Bacteria of the genus Sulfitobacter are widely distributed across various marine environments and play a vital role in the sulfur cycle. Sulfitobacter pontiacus WPMT18310 was isolated from water samples collected at a depth of 10,890 m in the Mariana Trench. In this study, we report the complete genome of S.

View Article and Find Full Text PDF

The experiments were conducted at different levels of infrared power, airflow, and temperature. The relationships between the input process factors and response factors' physicochemical properties of dried garlic were optimized by a self-organizing map (SOM), and the model was developed using machine learning. Artificial Neural Network (ANN) with 99% predicting accuracy and Self-Organizing Maps (SOM) with 97% clustering accuracy were used to determine the quality characteristics of garlic.

View Article and Find Full Text PDF

Redox transformation and partitioning of arsenic during the hydrothermal aging of FeS-As coprecipitates under anoxic condition.

J Environ Sci (China)

July 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. Electronic address:

In sulfidic anoxic environments, iron sulfides are widespread solid phases that play an important role in the arsenic (As) biogeochemical cycle. This work investigated the transformation process of FeS-As coprecipitates, the concurrent behavior, and the speciation of associated As under anoxic conditions. The results showed that FeS-As coprecipitates could convert to greigite and pyrite.

View Article and Find Full Text PDF

Contaminants in the water environment of different pyrite mines have varying characteristics due to different geological origins. Sulfur isotope (δS) is an effective tool to reveal the mechanism of water environment contamination, but no investigations have yet analyzed the characteristics and environmental significance of the δS in the water environment of different pyrite mines. This study involved a field investigation of four typical pyrite mines in China (representing volcanic, skarn, sedimentary-metamorphic, and coal-deposited types) and the analysis of the hydrochemistry of aqueous samples and the δS of both pyrite and dissolved sulfates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!