AI Article Synopsis

  • Despite extensive research, the atomic-scale structure of active sites in Ziegler-Natta catalysts, crucial for the chemical industry, remains unclear.
  • This study reveals the structure of dormant active sites using magnetic resonance techniques, specifically EPR and NMR, and correlates them with polymerization activity.
  • The findings suggest an ethylene polymerization mechanism involving bimetallic alkyl-Ti(III),Al species, linking spectroscopic data to the active species formed during ethylene presence through DFT calculations.

Article Abstract

Despite decades of extensive studies, the atomic-scale structure of the active sites in heterogeneous Ziegler-Natta (ZN) catalysts, one of the most important processes of the chemical industry, remains elusive and a matter of debate. In the present work, the structure of active sites of ZN catalysts in the absence of ethylene, referred to as dormant active sites, is elucidated from magnetic resonance experiments carried out on samples reacted with increasing amounts of BCl so as to enhance the concentration of active sites and observe clear spectroscopic signatures. Using electron paramagnetic resonance (EPR) and NMR spectroscopies, in particular 2D HYSCORE experiments complemented by density functional theory (DFT) calculations, we show that the activated ZN catalysts contain bimetallic alkyl-Ti(III),Al species whose amount is directly linked to the polymerization activity of MgCl-supported Ziegler-Natta catalysts. This connects those spectroscopic signatures to the active species formed in the presence of ethylene and enables us to propose an ethylene polymerization mechanism on the observed bimetallic alkyl-Ti(III),Al species based on DFT computations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c02818DOI Listing

Publication Analysis

Top Keywords

active sites
20
structure active
12
electron paramagnetic
8
paramagnetic resonance
8
ziegler-natta catalysts
8
spectroscopic signatures
8
bimetallic alkyl-tiiiial
8
alkyl-tiiiial species
8
active
6
sites
5

Similar Publications

Photocatalytic asymmetric C-C coupling for CO reduction on dynamically reconstructed Ru-O/Ru-O sites.

Nat Commun

January 2025

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada.

Solar-driven CO reduction to value-added C chemicals is thermodynamically challenging due to multiple complicated steps. The design of active sites and structures for photocatalysts is necessary to improve solar energy efficiency. In this work, atomically dispersed Ru-O sites in RuInO are constructed by interior lattice anchoring of Ru.

View Article and Find Full Text PDF

Structural insights into isoform-specific RAS-PI3Kα interactions and the role of RAS in PI3Kα activation.

Nat Commun

January 2025

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear.

View Article and Find Full Text PDF

Renewable electricity-driven electrochemical reduction of CO2 offers a promising route for production of high-value ethanol. However, the current state of this technology is hindered by low selectivity and productivity, primarily due to limited understanding of the atomic-level active sites involved in ethanol formation. Herein, we identify that the interfacial oxygen vacancy-neighboring Cu (Ov-Cu) pair sites are the active sites for CO2 electroreduction to ethanol.

View Article and Find Full Text PDF

Structure-Reactivity Relationship of Zeolite-Confined Rh Catalysts for Hydroformylation of Linear α-Olefins.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.

Substituting the molecular metal complexes used in the industrial olefin hydroformylation process is of great significance in fundamental research and practical application. One of the major difficulties in replacing the classic molecular metal catalysts with supported metal catalysts is the low chemoselectivity and regioselectivity of the supported metal catalysts because of the lack of a well-defined coordination environment of the metal active sites. In this work, we have systematically studied the influences of key factors (crystallinity, alkali promoters, etc.

View Article and Find Full Text PDF

Active site-inspired multicopper laccase-like nanozymes for detection of phenolic and catecholamine compounds.

Anal Chim Acta

January 2025

School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China. Electronic address:

Phenolic compounds are typical organic pollutants which cause severe human health problems due to their teratogenesis, carcinogenesis, neurotoxicity, immunotoxicity and endocrine disruption. Natural laccase is a multicopper oxidase existing in bacteria, plants, and insects, which can accelerate the transformation of phenolic compounds to their less hazardous oxidized products under mild conditions without harmful byproducts. Despite eco-environmentally friendly property of laccase, it still faces constraints of widespread application attribute to its high cost, complex preparation, and vulnerability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!