Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding pesticide non-target effects on natural enemies is a key element of successful conservation biological control. Due to their importance in agroecosystems worldwide, the phytoseiid mites are the most well-studied natural enemies in pesticide selectivity research. The wealth of literature associated with this topic allows for a thorough meta-analysis of pesticide non-target effects and may also indicate general trends relevant to many cropping systems. We conducted a meta-analysis using 2386 observations from 154 published papers examining the impact of pesticides on lethal (adult and juvenile mortality) and sublethal (fecundity, egg hatch) effects. Insecticides and herbicides did not statistically differ in toxicity to phytoseiids, but research on herbicide non-target effects is scarce. Specific insecticides, fungicides, and miticides were sorted into least and most harmful categories. Phytoseiid species also differed in sensitivity, with Galendromus occidentalis (Nesbitt), Neoseiulus californicus (McGregor), and Typhlodromus pyri Scheuten among the least sensitive species. Sensitivity variation may be partly due to pesticide resistance; the greatest differences between species were within older mode of action (MOA) groups, where resistance development has been documented. It has been speculated that specialist phytoseiids, which closely associate with Tetranychus spp. spider mites, have more opportunities for resistance development due to their necessary proximity to a pest that rapidly develops resistance. Effect sizes were higher for generalist phytoseiid species, supporting this hypothesis. This meta-analysis highlights pesticide types (herbicides) and MOA groups where more research is clearly needed. Our analysis also allows for more robust generalizations regarding which pesticides are harmful or selective to phytoseiids. © 2021 Society of Chemical Industry. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.6531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!