In-vitro cellular and in-vivo investigation of ascorbic acid and β-glycerophosphate loaded gelatin/sodium alginate injectable hydrogels for urinary incontinence treatment.

Prog Biomater

Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.

Published: June 2021

Urinary incontinence is one of the most common disorders especially in adult women. In this study, cellular and in-vivo analyses were performed on (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and CaCl cross-linked alginate and gelatin hydrogels containing β-glycerophosphate and ascorbic acid to evaluate the regenerative potential as injectable compression agents for the treatment of urinary incontinence. The hydrogels were prepared with different percentages of components and were named as GA1 (7.2% w/v gelatin, 6% w/v sodium alginate, 0.5:1w/w GPTMS, CaCl 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), GA2 (10% w/v gelatin, 8.5% w/v sodium alginate, 0.5:1 w/w GPTMS, CaCl 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), and GA3 (10% (w/v) gelatin, 8.5% w/v sodium alginate, 1:1 w/w GPTMS, CaCl 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate) hydrogels. The results of cell studies showed that although all three samples supported cell adhesion and survival, the cellular behavior of the GA2 sample was better than the other samples. Animal tests were performed on the optimal GA2 sample, which showed that this hydrogel repaired the misfunction tissue in a rat model within 4 weeks and the molecular layer thickness was reached the normal tissue after this duration. It seems that these hydrogels, especially GA2 sample containing 10% (w/v) gelatin, 8.5% (w/v) sodium alginate, 0.5:1 (w/w) GPTMS, CaCl 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, and 1.5 mg/mL β-glycerophosphate, can act as an injetable hydrogel for urinary incontinence treatment without the need for repeating the injection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271082PMC
http://dx.doi.org/10.1007/s40204-021-00160-9DOI Listing

Publication Analysis

Top Keywords

sodium alginate
32
ascorbic acid
24
gptms cacl
20
urinary incontinence
16
w/v gelatin
16
w/v sodium
16
cacl sodium
16
alginate 50 μg/ml
16
50 μg/ml ascorbic
16
acid 15 mg/ml
16

Similar Publications

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.

View Article and Find Full Text PDF

Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity.

View Article and Find Full Text PDF

TiO-sodium alginate core-shell nanosystem for higher antimicrobial wound healing application.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.

Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!