Background: CD3-based bispecific T cell engagers (bsTCEs) are one of the most promising bispecific antibodies for effective cancer treatments. To elicit target-specific T cell-mediated cytotoxicity, these bsTCEs contain at least one binding unit directed against a tumor antigen and another binding unit targeting CD3 in T cell receptor complex. Development of CD3-based bsTCEs, however, has been severely hampered by dose-limiting toxicities due to cytokine release syndrome. To address this limitation, we developed a novel functionally trivalent T cell engager (t-TCE) antibody containing affinity-reduced CD3 binding unit positioned to ensure monovalent CD3 engagement, in combination with bivalent tumor antigen binding of carcinoembryonic antigen (CEA).
Methods: We modeled the variable region of anti-CD3 in the complementarity-determining regions of the heavy chain and obtained CD3 binders with reduced binding affinity. Two optimized versions CEA/CD3-v1 and CEA/CD3-v2 were identified and generated in tetravalent format, characterized and compared and for functional activity.
Results: Our lead candidate, CEA/CD3-v2, demonstrated subnanomolar binding and picomolar potency against a panel of CEA-expressing cancer cell lines. In addition, we detected reduced T cell cytokine release with potent cytotoxic activity. Our t-TCE CEA/CD3-v2 molecule demonstrated strong antitumor effect in a dose-dependent manner in human peripheral blood mononuclear cell (PBMC) xenograft model. Furthermore, combination of CEA/CD3-v2 with atezolizumab provided synergistic antitumor effect.
Conclusions: Because of its effective tumor cell killing and with reduced cytokine release, CEA/CD3 bsTCE may greatly benefit in CEA-positive cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220303 | PMC |
http://dx.doi.org/10.1093/abt/tbab009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!