In the future, algae biotechnology could play an important role in sustainable development, especially with regard to the production of valuable chemicals. Among the established laboratory strains with efficient transgene expression, there are none that have demonstrated the required robustness for industrial applications, which generally require growth at larger scale. Here, we created a robust and mating-competent cell line of the green microalga which also possesses a high transgene expression capacity. This strain shows a comparably high resistance to shear stress by accumulating increased amounts of biomass under these conditions. As a proof-of-concept, a high phototrophic productivity of cadaverine from CO and nitrate was demonstrated by efficiently expressing a bacterial l-lysine decarboxylase. In contrast to other established strains, this novel chassis strain for phototrophic production schemes is equipped with the traits required for industrial applications, by combining mating-competence, cell wall-mediated robustness and high level transgene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209186 | PMC |
http://dx.doi.org/10.1016/j.btre.2021.e00644 | DOI Listing |
Mol Plant Pathol
January 2025
Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China.
Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
Background: Urate transporter 1 (URAT1) is a well-known therapeutic target for reducing urate levels in the treatment of hyperuricemia and gout. However, current pharmacological studies have failed to evaluate the efficacy of URAT1 inhibitors in non-primate animal models. We established a human URAT1 (hURAT1) transgenic knock-in (KI) mouse model to assess uricosuric agents' effectiveness and characterize URAT1-caused pathogenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.
Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.
View Article and Find Full Text PDFJCI Insight
December 2024
Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.
Fibrosis results from excessive extracellular matrix (ECM) deposition, causing tissue stiffening and organ dysfunction. Activated fibroblasts, central to fibrosis, exhibit increased migration, proliferation, contraction, and ECM production. However, it remains unclear if the same fibroblast performs all of the processes that fall under the umbrella term of "activation".
View Article and Find Full Text PDFTransgenic Res
December 2024
College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
Agrobacterium-mediated transformation of plants often results in the integration of multiple copies of T-DNA and backbone DNA from binary vectors into the host genome. However, the interplay between T-DNA and backbone DNA remains elusive. In this study, 70.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!