Objective: To introduce an MRI in-plane resolution enhancement method that estimates High-Resolution (HR) MRIs from Low-Resolution (LR) MRIs.

Method & Materials: Previous CNN-based MRI super-resolution methods cause loss of input image information due to the pooling layer. An Autoencoder-inspired Convolutional Network-based Super-resolution (ACNS) method was developed with the deconvolution layer that extrapolates the missing spatial information by the convolutional neural network-based nonlinear mapping between LR and HR features of MRI. Simulation experiments were conducted with virtual phantom images and thoracic MRIs from four volunteers. The Peak Signal-to-Noise Ratio (PSNR), Structure SIMilarity index (SSIM), Information Fidelity Criterion (IFC), and computational time were compared among: ACNS; Super-Resolution Convolutional Neural Network (SRCNN); Fast Super-Resolution Convolutional Neural Network (FSRCNN); Deeply-Recursive Convolutional Network (DRCN).

Results: ACNS achieved comparable PSNR, SSIM, and IFC results to SRCNN, FSRCNN, and DRCN. However, the average computation speed of ACNS was 6, 4, and 35 times faster than SRCNN, FSRCNN, and DRCN, respectively under the computer setup used with the actual average computation time of 0.15 s per [Formula: see text].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216682PMC
http://dx.doi.org/10.1109/JTEHM.2021.3076152DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
autoencoder-inspired convolutional
8
convolutional network-based
8
network-based super-resolution
8
super-resolution convolutional
8
neural network
8
srcnn fsrcnn
8
fsrcnn drcn
8
average computation
8
super-resolution
5

Similar Publications

tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction.

J R Stat Soc Ser C Appl Stat

January 2025

Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome.

View Article and Find Full Text PDF

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.

View Article and Find Full Text PDF

Research on bearing fault diagnosis based on a multimodal method.

Math Biosci Eng

December 2024

School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.

As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).

View Article and Find Full Text PDF

Objective: The objective of this research is to enhance pneumonia detection in chest X-rays by leveraging a novel hybrid deep learning model that combines Convolutional Neural Networks (CNNs) with modified Swin Transformer blocks. This study aims to significantly improve diagnostic accuracy, reduce misclassifications, and provide a robust, deployable solution for underdeveloped regions where access to conventional diagnostics and treatment is limited.

Methods: The study developed a hybrid model architecture integrating CNNs with modified Swin Transformer blocks to work seamlessly within the same model.

View Article and Find Full Text PDF

Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review.

BMC Cancer

January 2025

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Background: Melanoma is a highly aggressive skin cancer, where early and accurate diagnosis is crucial to improve patient outcomes. Dermoscopy, a non-invasive imaging technique, aids in melanoma detection but can be limited by subjective interpretation. Recently, machine learning and deep learning techniques have shown promise in enhancing diagnostic precision by automating the analysis of dermoscopy images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!