We have demonstrated widely tunable Yb:fiber-based laser sources, aiming to replace Ti:sapphire lasers for the nJ-level ultrafast applications, especially for the uses of nonlinear light microscopy. We investigated the influence of different input parameters to obtain an expansive spectral broadening, enabled by self-phase modulation and further reshaped by self-steepening, in the normal dispersion regime before the fiber damage. We also discussed the compressibility and intensity fluctuations of the demonstrated pulses, to reach the transform-limited duration with a very low intensity noise. Most importantly, we have demonstrated clear two-photon fluorescence images from UV-absorbing fluorophores to deep red dye stains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194626PMC
http://dx.doi.org/10.1364/BOE.422668DOI Listing

Publication Analysis

Top Keywords

two-photon fluorescence
8
low noise
4
noise self-phase-modulation-enabled
4
self-phase-modulation-enabled femtosecond
4
femtosecond fiber
4
fiber sources
4
sources tunable
4
tunable 740-1236 nm
4
740-1236 nm wide
4
wide two-photon
4

Similar Publications

Transferrin Modified Gold Nanoclusters-Based Biosensing Nanoplatform for High-Precision Multimodal Bioimaging of Tumor Cells.

Anal Chem

January 2025

Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO nanosheets was developed for multimodal imaging of tumor cells.

View Article and Find Full Text PDF

Background: Preclinical Alzheimer's disease research has gained traction as a potential point of intervention, though it is relatively unknown how early stages of the disease impact cortical health. The following study utilizes optical imaging methods (Figure 1) to characterize changes in neuronal, glutamate, and hemodynamic activities in a preclinical amyloidosis mouse model of the disease.

Method: Five (n = 5; 2 females & 3 males) APPswe/PS1dE9 x Thy1-jRGECO1a double transgenic mice were breed for whole-brain fluorescent imaging of neuronal activity.

View Article and Find Full Text PDF

Combining In Vivo Two-Photon and Laser Speckle Microscopy With the Ex Vivo Capillary-Parenchymal Arteriole Preparation as a Novel Approach to Study Neurovascular Coupling.

Microcirculation

January 2025

Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.

Objective: Cerebral blood flow (CBF) decline is increasingly recognized as an area of importance for targeting neurodegenerative disorders, yet full understanding of the mechanisms that underlie CBF changes are lacking. Animal models are crucial for expanding our knowledge as methods for studying global CBF and neurovascular coupling in humans are limited and require expensive specialized scanners.

Methods: Use of appropriate animal models can increase our understanding of cerebrovascular function, so we have combined chronic cranial windows with in vivo two-photon and laser speckle microscopy and ex vivo capillary-parenchymal arteriole (CaPA) preparations.

View Article and Find Full Text PDF

Diselenides as novel effective fluorescence quenchers to construct a two-photon fluorescent probe for thiols in a mouse stroke model.

Chem Commun (Camb)

January 2025

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.

A fluorescence quenching mechanism using linear diselenides was proposed for the first time through a combination of intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET). Herein, we synthesized and screened a two-photon fluorescent probe AFC-SeSe, demonstrating a remarkable 300-fold increase in response to glutathione (GSH). Additionally, AFC-SeSe enabled real-time observation of increased thiol levels following treatment within a short timeframe in a mouse model of stroke.

View Article and Find Full Text PDF

Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent quenching of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!