A challenging approach, but one providing a key solution to material growth, remote epitaxy (RE)-a novel concept related to van der Waals epitaxy (vdWE)-requires the stability of a two-dimensional (2-D) material. However, when graphene, a representative 2-D material, is present on substrates that have a nitrogen atom, graphene loss occurs. Although this phenomenon has remained a hurdle for over a decade, restricting the advantages of applying graphene in the growth of III-nitride materials, few previous studies have been conducted. Here, we report the stability of graphene on substrates containing oxygen or nitrogen atoms. Graphene has been observed on highly decomposed AlO; however, graphene loss occurred on decomposed AlN at temperatures over 1300 °C. To overcome graphene loss, we investigated 2-D hexagonal boron nitride (h-BN) as an alternative. Unlike graphene on AlN, it was confirmed that h-BN on AlN was intact after the same high-temperature process. Moreover, the overgrown AlN layers on both h-BN/AlN and h-BN/AlO could be successfully exfoliated, which indicates that 2-D h-BN survived after AlN growth and underlines its availability for the vdWE/RE of III-nitrides with further mechanical transfer. By enhancing the stability of the 2-D material on the substrate, our study provides insights into the realization of a novel epitaxy concept.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188504PMC
http://dx.doi.org/10.1039/d1sc01642cDOI Listing

Publication Analysis

Top Keywords

2-d material
12
graphene loss
12
stability graphene
8
boron nitride
8
graphene
8
2-d
5
aln
5
stability
4
graphene boron
4
nitride iii-nitride
4

Similar Publications

Temperature has an enhanced role in sediment NO and N fluxes in wider rivers.

Water Res

January 2025

Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.

Riverine NO and N fluxes, key components of the global nitrogen budget, are known to be influenced by river size (often represented by average river width), yet the specific mechanisms behind these effects remain unclear. This study examined how environmental and microbial factors influenced sediment NO and N fluxes across rivers with varying widths (2.8 to 2,000 m) in China.

View Article and Find Full Text PDF

An 18-connected wheel-shaped molybdenum(V) nickel-phosphate cluster for photoelectrochemical sensing of levofloxacin.

Chem Commun (Camb)

January 2025

Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China.

An 18-connected {MoNiP}-based 2-D layered network was constructed for photoelectrochemical sensing of levofloxacin, and it represents the highest connection number of the {MoNiP} wheel cluster to date. The detection limit is as low as 6.46 nM with a high sensitivity of 110.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the toxicity of lanthanum, yttrium, and cerium oxides on the soil organism Enchytraeus crypticus, focusing on survival, reproduction, avoidance behavior, and DNA integrity.
  • The research finds that the bulk forms of LaO have more significant effects than their nanoparticle counterparts, while YO nanoparticles are more toxic overall, impacting reproduction and causing DNA damage at lower concentrations.
  • Results indicate that the toxicity of rare earth element oxides varies based on the type of element, concentration, exposure duration, and form, underscoring the need for careful risk assessment for soil ecosystems affected by these substances.
View Article and Find Full Text PDF

Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.

View Article and Find Full Text PDF

Background: The goal of this study was to assess the impact of deep local hyperthermia on oxygen (O) saturation and infected volumes of lungs on coronavirus disease 2019 (COVID-19) cancer patients.

Materials And Methods: Fifty patients who suffered from COVID-19 (according to their computed tomography (CT) images and laboratory findings) were included in this study. The mentioned patients were divided into two groups (I and II) with thirty-five participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!