Similar Publications

Bioengineered Carboxymethylcellulose-Peptide Hybrid Nanozyme Cascade for Targeted Intracellular Biocatalytic-Magnetothermal Therapy of Brain Cancer Cells.

Pharmaceutics

October 2022

Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy.

View Article and Find Full Text PDF

Advanced nanotechnology has been emerging rapidly in terms of novel hybrid nanomaterials that have found various applications in day-to-day life for the betterment of the public. Specifically, gold, iron, silica, hydroxy apatite, and layered double hydroxide based nanohybrids have shown tremendous progress in biomedical applications, including bio-imaging, therapeutic delivery and photothermal/dynamic therapy. Moreover, recent progress in up-conversion nanohybrid materials is also notable because they have excellent NIR imaging capability along with therapeutic benefits which would be useful for treating deep-rooted tumor tissues.

View Article and Find Full Text PDF

A lattice-engineering route to heterostructured functional nanohybrids.

Chem Asian J

February 2011

Department of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea.

The fabrication of layered nanomaterials, such as inorganic-inorganic, organic-inorganic, and bioinorganic nanohybrids has been demonstrated through controlled lattice engineering techniques including intercalation, exfoliation-reassembling, and pillaring reactions. Such a lattice engineering method gives rise to an almost unlimited set of new hybrid compounds with a large spectrum of desirable properties. Due to the unique two-dimensional structures and properties, various kinds of functional nanohybrid materials can be utilized as photocatalysts, electrode materials, superconducting thin films, gas separation membranes, drug-delivery systems, and biomolecule reservoirs.

View Article and Find Full Text PDF

Highly porous layered inorganic-inorganic nanohybrids were prepared by pillaring SiO2-TiO2 nanosol particles with aluminosilicate layers. According to powder X-ray diffraction analysis, the basal spacing of SiO2-TiO2 pillared aluminosilicate (STPC) calcined at 400 degrees C was determined to be larger than 40 A. N2 adsorption-desorption isotherm measurements showed the STPC to have a large Brunauer-Emmett-Teller surface area of approximately 590 m2/g, of which approximately 70% originates from micropores with a size range of 8-16 A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!