The interaction between the microbial communities in aquatic animals and those in the ambient environment is important for both healthy aquatic animals and the ecological balance of aquatic environment. Crayfish (), with their high commercial value, have become the highest-yield freshwater shrimp in China. The traditional cultivation in ponds (i.e., monoculture, MC) and emerging cultivation in rice co-culture fields (i.e., rice-crayfish co-culture, RC) are the two main breeding modes for crayfish, and the integrated RC is considered to be a successful rice-livestock integration practice in eco-agricultural systems. This study explored the ecological interactions between the microbial communities in crayfish intestine and the ambient environment, which have not been fully described to date. The bacterial communities in crayfish intestine, the surrounding water, and sediment in the two main crayfish breeding modes were analyzed with MiSeq sequencing and genetic networks. In total, 53 phyla and 1,206 genera were identified, among which Proteobacteria, Actinobacteria, Tenericutes, Firmicutes, Cyanobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, RsaHF231, and Nitrospirae were the dominant phyla. The microbiota composition significantly differed between the water, sediment, and crayfish intestine, while it did not between the two breeding modes. We also generated a co-occurrence correlation network based on the high-confidence interactions with Spearman correlation ρ ≥ 0.75. In the genera co-correlation network, 95 nodes and 1,158 edges were identified, indicating significant genera interactions between crayfish intestine and the environment. Furthermore, the genera clustered into three modules, based on the different environments. Additionally, , and had the highest betweenness centrality and might be important in the interaction between crayfish and the ambient environment. Overall, this study enhances our understanding of the characteristics of the microbiota in crayfish and their surrounding environment. Moreover, our findings provide insights into the microecological balance in crayfish eco-agricultural systems and theoretical reference for the development of such systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219076PMC
http://dx.doi.org/10.3389/fmicb.2021.669570DOI Listing

Publication Analysis

Top Keywords

crayfish intestine
16
ambient environment
12
breeding modes
12
crayfish
10
microecological balance
8
microbial communities
8
aquatic animals
8
eco-agricultural systems
8
communities crayfish
8
water sediment
8

Similar Publications

Combined exposure to microplastics and copper elicited size-dependent uptake and toxicity responses in red swamp crayfish (Procambarus clarkia).

J Hazard Mater

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, PR China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:

In recent years, the toxicity of microplastics (MPs) in combination with heavy metals, particularly the influence of varying microplastic sizes on their toxic effects, has attracted widespread attention. In this study, red swamp crayfish (Procambarus clarkia) were exposed to MPs of two particle sizes (S-MPs: 5 μm, 1 mg/L; and L-MPs: 100 μm, 1 mg/L) and Cu (5 mg/L) individually or in combination for 96 h. The accumulation patterns of MPs were as follows: gills > intestines > hepatopancreas > muscles.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted to explore the fermentation process of certain leaves and its impact on crayfish in terms of growth and health benefits.
  • It was found that optimizing fermentation conditions led to improved nutritional content, like increased proteins and antioxidants, while reducing harmful substances.
  • The group receiving a specific concentration of fermented leaves (1FMO) showed the best growth and gut health, including enhanced enzyme activities and better intestinal microbiome balance compared to the control group.
View Article and Find Full Text PDF

To explore the effects of dietary threonine on growth and ovarian development of red swamp crayfish (), crayfish (5.48 ± 0.19 g) were fed six isoproteic and isoenergetic diets with varying levels of threonine (7.

View Article and Find Full Text PDF

Integration of transcriptomics, gut microbiota, and physiology reveals the toxic response of bensulfuron-methyl in Procambarus clarkii.

Sci Total Environ

December 2024

Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin) Ministry of Agriculture and Rural Affairs, Harbin 150070, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China. Electronic address:

Bensulfuron-methyl (BSM) enters the environment through agricultural practices, posing a threat to the health of aquatic organisms. Currently, the toxic mechanisms of BSM on crayfish (Procambarus clarkii) have not been thoroughly investigated. In this study, crayfish were exposed to BSM solutions at concentrations of 0, 5, and 10 mg/L for 48 h.

View Article and Find Full Text PDF

This study investigated the effects of feeding paddy rice on the physiology, metabolism, and gut microbiota of ducks in a rice-duck-crayfish (RDC) system. A total of 540 ducks (20-days-old) were randomly divided into 3 groups with 3 replicates and 60 ducks per replicate. The 40-d experiment involved 3 diet treatments: a complete diet (CD), 50% paddy rice + 50% complete diet (RCD), and 100% paddy rice diet (RD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!