Advances in Microwave Near-Field Imaging: Prototypes, Systems, and Applications.

IEEE Microw Mag

Ellumen, Inc., Arlington, Virginia, United States.

Published: May 2020

Microwave imaging employs detection techniques to evaluate hidden or embedded objects in a structure or media using electro-magnetic (EM) waves in the microwave range, 300 MHz-300 GHz. Microwave imaging is often associated with radar detection such as target location and tracking, weather-pattern recognition, and underground surveillance, which are far-field applications. In recent years, due to microwaves' ability to penetrate optically opaque media, short-range applications, including medical imaging, nondestructive testing (NDT) and quality evaluation, through-the-wall imaging, and security screening, have been developed. Microwave near-field imaging most often occurs when detecting the profile of an object within the short range (when the distance from the sensor to the object is less than one wavelength to several wave-lengths) and depends on the electrical size of the antenna(s) and target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221233PMC
http://dx.doi.org/10.1109/mmm.2020.2971375DOI Listing

Publication Analysis

Top Keywords

microwave near-field
8
near-field imaging
8
microwave imaging
8
imaging
6
advances microwave
4
imaging prototypes
4
prototypes systems
4
systems applications
4
microwave
4
applications microwave
4

Similar Publications

Optical vortex beams carrying orbit angular momentum have attracted significant attention recently. Perfect vortex beams, characterized by their topological charge-independent intensity profile, have important applications in enhancing communication capacity and optimizing particle manipulation. In this paper, metal-insulator-metal copper-coin type reflective metasurfaces are proposed to generate perfect composite vortex beams in X-band.

View Article and Find Full Text PDF

Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.

View Article and Find Full Text PDF

A metamaterial absorber capable of swiftly altering its electromagnetic response in the microwave range offers adaptability to changing environments, such as tunable stealth capabilities. Inspired by the chameleon's ability to change color through the structural transformation of photonic lattice crystals, which shift the bandgaps of reflection and transmission of visible light, we designed a crisscross structure that transforms from an expanded to a collapsed form. This transformation enables a switch between broadband absorption and peak transmission in the microwave range (4 to 18 gigahertz).

View Article and Find Full Text PDF

As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index.

View Article and Find Full Text PDF

Nowadays, metasurfaces have attracted considerable attention due to their promising and advanced control of electromagnetic (EM) waves. However, it is still challenging to shape guided waves into desired free-space mode, while simultaneously manipulating spatial incident waves using a single metasurface. Herein, a class of metasurfaces capable of multiplexing guided and space waves is proposed to achieve advanced EM functionalities in microwave regions, which can find great application potentials in radar systems, wireless communications, and wireless power transfer (WPT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!