Autothermal thermophilic aerobic digestion (ATAD) is used to treat human excreta hygienically. We previously reported a unique full-scale ATAD, showing distinctive bacterial community transitions and producing high-nitrogen-content liquid fertilizer; nevertheless, the mechanism remains unclear. One hypothesis involves using a gas-inducing (GI) agitator. We designed a lab-scale GI system and compared it with a disk-turbine (DT) agitator system by mimicking the temperature shift of full-scale ATAD. The agitation system and its agitation speed greatly affected physicochemical properties and bacterial community structure. GI system at 1000 rpm (GI1000; high total carbon removal efficiency, 88.3%), with few nitrifying and denitrifying bacteria, maintained a high ammoniacal nitrogen concentration and had more shared operational taxonomic units related to Acinetobacter sp., Arcobacter sp., and Longimicrobium sp. with the full-scale ATAD compared with the GI system at 490 rpm and DT system at 1000 rpm (DT1000). Furthermore, DT1000, with a high abundance of nitrifying and denitrifying bacteria such as Alcaligenes aquatilis and Pseudomonas caeni, removed 94.7% total nitrogen with 71.9% total carbon removal efficiency. These results suggested that shear stress and oxygen supply system would change the bacterial community structure, thus affected ATAD performances. Consequently, it is possible that ATAD can be applied for not only production of highly nitrogen-containing liquid fertilizer but also extremely nitrogen removal of wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2021.05.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!