Impaired executive functions in ADHD are associated with hypoactivity of the right inferior frontal gyrus (IFG). This region was targeted via repetitive applications of anodal, high-definition transcranial direct current simulation (HD-tDCS) on five consecutive days in 33 ADHD patients (10-17years) and in a healthy control group (n=13, only sham). Patients received either sham (n=13) or verum tDCS with 0.5mA (n=9) or 0.25mA (n=11) depending on individual cutaneous sensitivity. During stimulation, participants performed a combined working memory and response inhibition paradigm (n-back/nogo). At baseline, post, and a 4-month follow up, electroencephalography was recorded during this task. Moreover, interference control (flanker task) and spatial working memory (spanboard task) were assessed to explore possible transfer effects. Omission errors and reaction time variability in all tasks served as measures of attention. In the 0.25mA group increased nogo commission errors indicated a detrimental tDCS effect on response inhibition. After the 5-day stimulation, attentional improvements in the 0.5mA group were indicated by reduced omission errors and reaction time variability. Variability improvements were still evident at follow up. In all groups, nogo P3 amplitudes were reduced post-stimulation, but in the 0.5mA group this reduction was smaller than in the 0.25mA group. Results of the current study suggest distinct effects of tDCS with different current intensities demonstrating the importance of a deeper understanding on the impact of stimulation parameters and repeated tDCS applications to develop effective tDCS-based therapy approaches in ADHD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pbr.2021.01.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!