ZNF219 protects human lens epithelial cells against HO-induced injury via targeting SOX9 through activating AKT/GSK3β pathway.

Hum Exp Toxicol

117972The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China.

Published: December 2021

Opacity of the lens caused by cataracts could lead to severe visual impairment and even blindness. Oxidative stress caused by exposure of lens epithelial cells to hydrogen peroxide (HO) can lead to DNA damage and impair cell function. Therefore, how to prevent lens epithelial cells from being harmed by HO is an urgent problem. The ZNF219 gene belongs to the Kruppel like zinc finger gene family, which is involved in a variety of biological processes. In this study, we found the low expression of ZNF219 in HO-induced HLE-B3 cells. We further noticed ZNF219 could improve the survival rate of HO-induced HLE-B3 cells, and inhibit the apoptosis and oxidative stress response. Mechanically, ZNF219 protected human lens epithelial cells against HO-induced injury via targeting SOX9 through activating AKT/GSK3β pathway. We therefore thought ZNF219 was a key protective protein in the oxidative damage of human lens epithelial cells and the pathogenesis of cataract.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09603271211027944DOI Listing

Publication Analysis

Top Keywords

lens epithelial
20
epithelial cells
20
human lens
12
cells ho-induced
8
ho-induced injury
8
injury targeting
8
targeting sox9
8
sox9 activating
8
activating akt/gsk3β
8
akt/gsk3β pathway
8

Similar Publications

Background: It is well-known that ultraviolet B (UVB) causes cataracts by inducing pyroptosis and the production of reactive oxygen species (ROS) in human lens epithelial cells (HLECs). The transcription factor E2F1 (E2F1) serves as a positive regulator of disrupted pathways involved in histone modification and cell cycle regulation. However, its function in UVB-treated HLECs remains unknown.

View Article and Find Full Text PDF

Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.

View Article and Find Full Text PDF

SP1/COL1A2/ZEB1 axis promotes TGF-β2-induced lens epithelial cell proliferation, migration, invasion and EMT process.

Exp Eye Res

December 2024

Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China. Electronic address:

Posterior capsule opacification (PCO) is the most common complication after cataract surgery. In this study, we used transforming growth factor beta-2 (TGF-β2)-induced SRA01/04 cells to mimic PCO cell model and explored the functions and underlying mechanisms of specific protein 1 (SP1) in TGF-β2-induced SRA01/04 cell development. MTT assay and EdU assay were carried out to explore the proliferation of SRA01/04 cells.

View Article and Find Full Text PDF

Aim: To investigate the biocompatibility and bacterial adhesion properties of light responsive materials (LRM) and analyze the feasibility and biosafety of employing LRM in the preparation of accommodative intraocular lenses (AIOLs).

Methods: Employing fundamental experimental research techniques, LRM with human lens epithelial cells (hLECs) and human retinal pigment epithelium cells (ARPE-19 cells) were co-cultured. Commercially available intraocular lenses (IOLs) were used as controls to perform cell counting kit-8 (CCK-8), cell staining under varying light intensities, cell adhesion and bacterial adhesion experiments.

View Article and Find Full Text PDF

Purpose: To report the clinical outcomes achieved in refractory cases of neurotrophic keratopathy (NK) through the utilization of insulin eye drops alone or in conjunction with a drug-depository contact lens (DDCL).

Observations: This multicentric prospective open-label uncontrolled case series included consecutive patients with NK refractory to conventional treatment. Insulin eye drops (1 unit/mL) were prescribed 4 times/day in all cases, and a Therapeutic Hyper-CL™ soft contact lens (EyeYon Medical, Ness Ziona, Israel), designed to act as a drug reservoir, was applied in selected patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!