. Electrical impedance tomography (EIT) for lung perfusion imaging is attracting considerable interest in intensive care, as it might open up entirely new ways to adjust ventilation therapy. A promising technique is bolus injection of a conductive indicator to the central venous catheter, which yields the indicator-based signal (IBS). Lung perfusion images are then typically obtained from the IBS using the maximum slope technique. However, the low spatial resolution of EIT results in a partial volume effect (PVE), which requires further processing to avoid regional bias.. In this work, we repose the extraction of lung perfusion images from the IBS as a source separation problem to account for the PVE. We then propose a model-based algorithm, called gamma decomposition (GD), to derive an efficient solution. The GD algorithm uses a signal model to transform the IBS into a parameter space where the source signals of heart and lung are separable by clustering in space and time. Subsequently, it reconstructs lung model signals from which lung perfusion images are unambiguously extracted.. We evaluate the GD algorithm on EIT data of a prospective animal trial with eight pigs. The results show that it enables lung perfusion imaging using EIT at different stages of regional impairment. Furthermore, parameters of the source signals seem to represent physiological properties of the cardio-pulmonary system.. This work represents an important advance in IBS processing that will likely reduce bias of EIT perfusion images and thus eventually enable imaging of regional ventilation/perfusion (V/Q) ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6579/ac0e84DOI Listing

Publication Analysis

Top Keywords

lung perfusion
24
perfusion images
16
perfusion imaging
12
source separation
8
lung
8
electrical impedance
8
impedance tomography
8
source signals
8
perfusion
7
eit
5

Similar Publications

Objectives: Different intrathoracic perfusion therapeutic regimens are available for non-small cell lung cancer with malignant pleural effusion (MPE). Antiangiogenic agents are often used to control MPE, and the results are satisfactory. Here, we performed a network meta-analysis to reveal optimal combinations of antiangiogenic agents and chemical agents and assess their effectiveness and safety.

View Article and Find Full Text PDF

Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion.

View Article and Find Full Text PDF

Evaluation of the therapeutic effects of nebulized inhalation of hydrogen-rich water on primary blast lung injury in C57BL/6 mice.

Surgery

January 2025

Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:

Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.

View Article and Find Full Text PDF

Although the corticosteroid betamethasone is routinely administered to accelerate lung and cardiovascular maturation in the preterm fetus prior to birth, and use of delayed cord clamping (DCC) is recommended at birth by professional bodies, it is unknown whether antenatal betamethasone alters perinatal pulmonary or systemic arterial blood flow accompaniments of DCC. To address this issue, preterm fetal lambs [gestation 127 (1) days, term = 147 days] with (n = 10) or without (n = 10) antenatal betamethasone treatment were acutely instrumented under general anaesthesia with flow probes to obtain left (LV) and right ventricular (RV) outputs, major central arterial blood flows and shunt flow across both the ductus arteriosus and foramen ovale (FO). After delivery, lambs underwent initial ventilation for 2 min prior to DCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!