A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. | LitMetric

A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis.

Redox Biol

Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Institute for Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia; Departments of Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, PA, USA. Electronic address:

Published: September 2021

Ferroptosis is a redox-driven type of regulated cell death program arising from maladaptation of three metabolic pathways: glutathione homeostasis, iron handling and lipid peroxidation. Though GSH/Gpx4 is the predominant system detoxifying phospholipid hydroperoxides (PLOOH) in mammalian cells, recently Gpx4-independent regulators of ferroptosis like ferroptosis suppressor protein 1 (FSP1) in resistant cancer lines and iNOS/NO in M1 macrophages have been discovered. We previously reported that Pseudomonas aeruginosa (PA) utilizes its 15- lipoxygenase (pLoxA) to trigger ferroptotic death in epithelial cells by oxidizing the host arachidonoyl-phosphatidylethanolamine (ETE-PE) into pro-ferroptotic 15-hydroperoxy- arachidonyl-PE (15-HpETE-PE). Here we demonstrate that PA degrades the host GPx4 defense by activating the lysosomal chaperone-mediated autophagy (CMA). In response, the host stimulates the iNOS/NO-driven anti-ferroptotic mechanism to stymie lipid peroxidation and protect GPx4/GSH-deficient cells. By using a co-culture model system, we showed that macrophage-produced NO can distantly prevent PA stimulated ferroptosis in epithelial cells as an inter-cellular mechanism. We further established that suppression of ferroptosis in epithelial cells by NO is enabled through the suppression of phospholipid peroxidation, particularly the production of pro-ferroptotic 15-HpETE-PE signals. Pharmacological targeting of iNOS (NO generation) attenuated its anti-ferroptotic function. In conclusion, our findings define a new inter-cellular ferroptosis suppression mechanism which may represent a new strategy of the host against P. aeruginosa induced theft-ferroptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227829PMC
http://dx.doi.org/10.1016/j.redox.2021.102045DOI Listing

Publication Analysis

Top Keywords

epithelial cells
12
pseudomonas aeruginosa
8
lipid peroxidation
8
ferroptosis epithelial
8
ferroptosis
6
host
5
cells
5
thiol-independent mechanism
4
epithelial
4
mechanism epithelial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!