Deep eutectic solvents (DESs) have achieved the rising attention of the scientific community because of their distinctive physicochemical properties and variety of applications. Herein, DES composed of choline chloride as hydrogen bond acceptor (HBA) and glycolic acid as hydrogen bond donor (HBD) was synthesized. Next, the prepared DES was examined as a functionalization agent for rice husk ash (RHA) to form a novel adsorbent (DES-RHA). To ensure the formation of DES and to recognize the modifications occurred due to the functionalization process, a comprehensive characterization study was performed using HNMR, FTIR spectroscopy, TGA, XRD, FESEM, HR-TEM and BET surface area. Potential of the prepared DES-RHA was investigated for the uptake of ofloxacin (OFL) from an aqueous environment. The impact of relevant process parameters was evaluated under optimum conditions, and the data were examined applying various kinetic and isotherm models. As per the regression findings, adsorption kinetics data were well described by pseudo-second-order model, and the isotherm data were in good agreement with Langmuir, Temkin, RP and Freundlich isotherm models. Further, the adsorption procedure was endothermic and spontaneous. The high regeneration and adsorption capacity of DES-RHA than untreated RHA adds a promising approach to eliminate emerging pollutants present in effluent sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2021.103847 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Turkey.
Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:
The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.
View Article and Find Full Text PDFDeep eutectic solvents are highly tailorable non-aqueous solvents with potential applications ranging from energy catalysis to cryopreservation. Self-assembled lipid structures are already used in a variety of industries including cosmetics, drug delivery and as microreactors. However, most research into lipid self-assembly has been limited to aqueous solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!