A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington's disease. | LitMetric

Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington's disease.

Prog Neurobiol

Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA. Electronic address:

Published: September 2021

AI Article Synopsis

  • Mitochondrial dysfunction plays a crucial role in neuronal damage seen in Huntington's disease (HD), but the specific mechanisms involved remain unclear.
  • The study reveals that the protein XIAP normally protects neurons by stabilizing p53, but this protection is diminished in HD, leading to increased p53 in mitochondria and subsequent oxidative stress and cell death.
  • Overexpressing XIAP in HD models mitigates damage and improves motor functions, highlighting the potential of targeting the XIAP-p53 pathway for therapeutic interventions in HD.

Article Abstract

Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364511PMC
http://dx.doi.org/10.1016/j.pneurobio.2021.102110DOI Listing

Publication Analysis

Top Keywords

n171-82q mice
12
xiap
11
xiap triggers
8
neuropathological processes
8
huntington's disease
8
neuronal damage
8
striatal cells
8
vitro vivo
8
knockdown xiap
8
xiap exacerbated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!